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ABSTRACT 

The present study addresses the problem of defining musical notes 
from pitch tracks, in the context of a system for melody detection in 
polyphonic musical signals. This is an important issue for melody 
transcription, as well as melody-based music information retrieval. 
Previous work in the area tackled mainly the extraction of melodic 
pitch lines, without explicit determination of musical notes. There-
fore, in this paper we propose an approach for the creation of musi-
cal notes based on a two-stage segmentation of pitch tracks. In the 
first step, frequency-based segmentation is carried out through the 
detection of frequency variations in pitch tracks. In the second 
stage, salience-based segmentation is performed so as to split con-
secutive notes with equal value, by making use of salience minima 
and note onsets. 

1. INTRODUCTION 

As a result of recent technological innovations, there has been a 
tremendous growth in the Electronic Music Distribution industry. 
Factors like the widespread access to the Internet, bandwidth 
increasing in domestic accesses or the generalized use of compact 
audio formats with CD or near CD quality, such as mp3, have given 
a great contribution to that boom. Presently, it is expected that the 
number of digital music archives, as well as their dimension, grow 
significantly in the near future, both in terms of music database size 
and in number of genres covered.  

However, any large music database is only really useful if users 
can find what they are looking for in an efficient manner. Today, 
whether it is the case of a digital music library, the Internet or any 
music database, search and retrieval is carried out mostly in a tex-
tual manner, based on categories such as author, title or genre. This 
approach leads to a certain number of difficulties, namely in what 
concerns database search in a transparent and intuitive way. There-
fore, in order to overcome the described limitations, research is 
being conducted in an emergent and promising field called Music 
Information Retrieval. 

Query-by-humming (QBH) is a particularly intuitive way of 
searching for a musical piece, since melody humming is a natural 
habit of humans. Several techniques have been proposed in order to 
attain that goal, e.g., [3]. However, presently, this work is being 
carried out only in the MIDI domain, which places important 
usability questions. Querying “real-world” polyphonic recorded 
musical pieces requires a melody representation of the songs. This 
is a complex task since many types of instruments can be playing at 
the same time, with severe spectral interference between each other. 

Previous work concerned with obtaining symbolic representa-

tions from musical audio has concentrated especially on the prob-
lem of full music transcription, which requires accurate multi-pitch 
estimation for the extraction of all fundamental frequencies (FF) 
present in a song under analysis, e.g., [1], [7]. However, the present 
solutions are neither sufficiently general nor accurate. In fact, the 
proposed approaches impose several constraints on the music mate-
rial, namely on the maximum number of concurrent instruments, 
musical style or type of instruments present.  

Only little work has been conducted in the problem of melody 
detection in polyphonic audio, e.g., [4],[5],[8],[9]. Additionally, 
most of the work is only concerned with the extraction of melodic 
pitch lines. Therefore, we propose an approach for melody detection 
with explicit note determination, in terms of note values, onsets and 
offsets. An overview of the system is given in Section 2. Definition 
of musical notes, the main topic of this paper, is the subject of 
Section 3. In Section 4, evaluation results are discussed.  

2. MELODY DETECTION SYSTEM 

Our multi-stage strategy for melody detection consists of five mod-
ules, as illustrated in Figure 1. The general strategy was described 
previously, e.g., [9], [10]. Thus, only a brief description is offered 
here, for the sake of completeness. New improvements to the trajec-
tory segmentation stage are described in more detail. 
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Figure 1: Overview of the melody detection system. 

2.1. Multi-Pitch Detection (MPD) 

In the first stage of the algorithm, the objective is to capture a set of 
pitch candidates, which constitute the basis of possible future notes. 
The MPD algorithm receives as input a raw musical signal (monau-
ral, sampling frequency fs = 22050 Hz, 16 bits quantization) and 
outputs a set of pitch candidates and respective saliences, related to 
the energy of the FF. We perform pitch detection in a frame-based 
analysis, defining a 46.44 ms frame length and a hop size of 5.8 ms. 
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Then, we conduct an auditory model based analysis of each 
frame, in order to detect the most salient pitches in each. This analy-
sis is performed in four stages: i) conversion of the sound waveform 
into auditory nerve responses for each frequency channel, using a 
model of the ear with particular emphasis on the cochlea, obtaining 
a so-called cochleagram; ii) detection of the main periodicities in 
each frequency channel using auto-correlation, from which a 
correlogram results; iii) detection of the global periodicities in the 
sound waveform by calculation of a summary correlogram (SC); 
and iv) detection of the pitch candidates in the frame by looking for 
the most salient peaks in the SC. 

The approach undertaken is based on an auditory model pro-
posed by Slaney and Lyon [14]. 

2.2. Multi-Pitch Trajectory Construction (MPTC) 

The second stage of our algorithm aims to create a set of pitch 
trajectories, formed by connecting consecutive pitch candidates 
with similar frequencies. To this end, we based ourselves on the 
algorithm proposed by Serra [13]. The general idea is to find re-
gions of stable pitches, which indicate the presence of musical 
notes. In order not to loose information on the dynamic properties 
of musical notes, e.g., frequency modulations, glissandos, we had 
especial care in guaranteeing that such behaviors were kept within a 
single track. Therefore, each trajectory may contain more than one 
note and should, therefore, be segmented in the next stage.  

2.3. Trajectory Segmentation 

The trajectories that result from the MPTC algorithm may contain 
more than one note and, therefore, have to be segmented. Such 
segmentation is performed in two stages: frequency and salience 
segmentation. This is the main topic of this paper and is described 
in the following section. 

2.4. Note Elimination 

The objective of the fourth stage of the melody detection algorithm 
is to delete irrelevant note candidates, based on their saliences, 
durations and on the analysis of harmonic relations.  

First, low-salience notes are eliminated. Next, all the notes that 
are too short are also deleted. Finally, we look for harmonic rela-
tions between notes, based on the fact that some of the obtained 
pitch candidates are sub or super-harmonics of real pitches in the 
sound wave. Therefore, we make use of perceptual rules of sound 
organization, namely  “harmonicity” and “common fate” [2].  

In the “harmonicity” rule, if two notes have approximately the 
same onset times and are harmonically related, it is possible that 
they have come from the same source. This is further validated by 
the rule of “common fate”, where harmonically-related notes can be 
grouped by exploiting aspects such as common modulation, both in 
frequency and in amplitude.  

2.5. Melody Extraction 

In the final stage of the present melody detection system, our goal is 
to obtain a final set of notes comprising the melody of the song 
under analysis. In fact, although a significant amount of irrelevant 
notes are eliminated in the previous stage, there are still many notes 
present. Hence, we have to extract the ones that convey the main 
melodic line. 

Many aspects of auditory organization influence the perception 
of melody by humans, for instance in terms of the role played by the 
pitch, timbre and intensity content of the sound signal. In our ap-
proach, we do not attack the problem of source separation. Instead, 
we base our strategy on two assumptions that we designate as the 
“salience principle” and the “melodic smoothness principle”. 

In the salience principle, we exploit the fact that the main me-
lodic line often stands out in the mixture. Thus, in the first step of 
the melody extraction stage, we select the most salient notes as the 
initial melody candidates.  

One of the limitations of only taking into consideration pitch sa-
lience is that the notes comprising the melody are not always the 
most salient ones. In this situation, erroneous notes may be selected 
as belonging to the melody, whereas true notes are excluded. This is 
particularly clear when abrupt transitions between notes are found. 
In fact, small frequency intervals favor melody coherence, since 
smaller steps in pitch hang together better [2]. Hence, we improved 
melody extraction by smoothing the initial melodic contour. 

3. DEFINITION OF MUSICAL NOTES 

As referred above, the trajectories that result form the MPTC stage 
may contain more than one note. Hence, they must be segmented, 
so as to explicitly define musical notes, characterized by a MIDI 
value and onset and offset times.  

Past work in melody detection addressed especially the issue of 
extracting melodic pitch lines, without explicit definition of musical 
notes, or using ad-hoc algorithms for segmentation (e.g., segment as 
soon as MIDI note values change). As Klapuri refers [7], this has 
turn out to be a difficult problem for some signals, particularly for 
singing. In this way, we propose a robust algorithm for the segmen-
tation of the obtained pitch tracks, with recourse to frequency and 
pitch salience segmentation. 

The proposed algorithm, though used in the perspective of a 
system for melody detection in polyphonic musical signals, is envi-
sioned as general approach for segmentation of pitch tracks, either 
in monophonic or polyphonic contexts.  

3.1. Frequency Segmentation 

The objective of frequency segmentation is to separate all the notes 
with different values that are present in each pitch track. This is 
performed taking into consideration the presence of glissandos and 
frequency modulation.  

The main issue is, then, to approximate a frequency curve by a 
set of piecewise-constant functions (PCFs), as a basis for track 
segmentation. However, this is not a trivial task, since musical 
notes, besides containing regions of approximately stable fre-
quency, also contain regions of transition, where frequency evolves 
until (pseudo-)stability, e.g., glissando. Moreover, frequency modu-
lation can occur, and so no stable frequency exists. Yet, an average 
stable fundamental frequency can be determined. 

Our problem, could, thus, be characterized as one of finding a 
set of PCFs that best approximate a frequency curve. As unknown 
variables we have the number of functions, their respective parame-
ters (only bias, for constant functions), and start and end points.  

We have investigated some approaches for PCF, or, generally, 
piecewise-linear, approximation. Two main paradigms are defined: 
“characteristic points” (CPs) and “minimum error” (ME) [11]. 
Algorithms based on CPs do not suit well our needs, e.g., in the 
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case of frequency modulation. In fact, the optimal function may not 
pass at the obtained CPs. In this way, we constrained the possible 
approaches to the second paradigm. As for the ME paradigm, it can 
be further categorized into two main approaches. In the first one, an 
upper bound for the global error is specified and the minimum 
number of functions that satisfies it, and respective parameters, is 
computed. In the second (less studied) approach, a maximum num-
ber of functions is specified, and optimization is conducted in order 
to minimize the global approximation error. However, these algo-
rithms either require that an analytic expression of the curve be 
known, or need to test different values for the number of functions. 

Therefore, we propose an algorithm for approximation of fre-
quency curves from musical notes by PCFs, taking advantage of 
some peculiarities of musical signals.  

The algorithm starts by filtering the frequency curves of all 
tracks, in order to fill in missing values, as a result of the MPTC 
algorithm, which allows for a maximum number of “sleeping” 
frames in peak continuation. This is carried out by a simple zero-
order-hold (ZOH), as in (1). There, f[k] is the frequency value of the 
kth frame in the current track, in a total of N frames, and fF[k] de-
notes the filtered curve.  
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After that, the filtered frequency curve is approximated by 
PCFs through the quantization of each frequency value to the corre-
sponding MIDI note number, according to (2). There, fMIDI[k] repre-
sents the MIDI value corresponding to frequency fF[k] and Fref is the 
frequency of MIDI note number zero. 
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Then, PCFs can be directly defined as sequences of constant 
MIDI values. Generally, it comes (3), where, PCi represents the ith 
PCF, defined in the domain Di and characterized by a sequence of 
constant MIDI values equal to ci. Also, the special case of singleton 
domains is allowed. The total number of PCFs is denoted by nPC.  
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However, due to frequency variations resulting from modula-
tion, as well as frequency errors from the MPD stage, fluctuations 
of MIDI values may be present. Also, glissandos should be kept 
within one single function. Therefore, fMIDI[k] must be filtered, so as 
to allow for a more robust determination of PCFs that may represent 
musical notes. Three stages of filtering are applied in order to ap-
propriately deal with too short note candidates. Hence, PCFs whose 
length (i.e., the number of elements in the domain) is below 125ms 
(22 frames, using the defined hop size) are dealt with. 

In the first filtering stage, the general idea is that short se-
quences delimited by long sequences with the same note number, 
e.g., {70,…,70,71,71,70,70,71,70…,70}, are interpreted as possible 
frequency modulation regions. So, they should be filtered, keeping 
the value of the delimiting sequence (70 in this example. This is 
exemplified in Figure 2. 

b) Filtered PCFs

a) Original PCFs

 

Figure 2: Filtering of delimited sequences. 

However, some short PCFs are still kept. Therefore, a similar 
filtering is applied, much in the same way as in Figure 2, with the 
difference that no long sequences need to be found. 

At this moment, the only short PCFs present correspond to glis-
sandos. Therefore, we look for a succession of increasing or de-
creasing short notes (corresponding to the transition region) and 
possibly ending with a long note. Here, if the final PCF in the se-
quence is long, the new PCF keeps its the value, since there is 
strong evidence that the glissando evolves until the final note. 
Otherwise, if the sequence only contains short notes and if the 
duration of the whole sequence is long enough to form a note, the 
new PCF receives the value of the last note in the sequence. Glis-
sando filtering is illustrated in Figure 3. 
 

b) Filtered PCFs

a) Original PCFs

 

Figure 3: Glissando filtering. 

After PCF filtering, the precise timings for each note candidate 
must be adjusted. In fact, as a consequence of MIDI quantization, 
there is a delay in the moment where transitions start, since the 
frequencies at the beginning of transitions may be converted to the 
same MIDI value, instead of the next MIDI value. In this way, we 
define the start of the transition as the point of maximum derivative 
of f[k], after it starts to move towards the next note, i.e., the point of 
maximum derivative after the last occurrence of the median value.  
The median, mdi, is calculated only for non-empty frames (zero 
frequency) whose original MIDI note numbers are equal to the 
MIDI numbers after filtering, according to (4). In this way, the 
median, mdi, is obtained in a more robust way, since possibly noisy 
frames are not considered. 

 [ ]( ) [ ] [ ]: and 0median ,
i MIDI ii k D f k c f kmd f k ∈ = ≠= ∀  (4) 

Furthermore, we compute the discrete derivative using the 
original frequency curve instead of the filtered one. As a conse-
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quence of the empty frames present, the derivative in a given point 
k is calculated as the difference between f[k] and f[p], where p 
denotes the first non-empty frame immediately before frame k. 
Formally, it comes, (5): 
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Finally, we have to assign a MIDI note number to each of the 
obtained PCFs for each track. In order to increase the robustness of 
the assignment procedure, we deal with ambiguous situations, 
where it is not totally clear which is the correct MIDI value. This 
happens, for instance, when the median frequency is close to the 
frequency border of two MIDI notes. 

In this way, we compute the initial MIDI value from the median 
frequency of each function, according to eq. (2). Then, we get the 
reference frequency associated to the obtained MIDI value, by 
inverting eq. (2). This is carried out in order to check if the median 
does not deviate too much from the reference frequency. Here, we 
define a maximum deviation, maxDev, of 30 cents. Therefore, if the 
median is in the allowed frequency range for the defined MIDI 
value (eq. (6)), we conclude that there is evidence that the assigned 
MIDI value is correct and, so, keep it.   
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In (6), iniMIDIi represents the initial MIDI value of the ith PCF, 
refFi stands for the corresponding reference frequency, rangei 
denotes the allowed frequency range, ‘MIDI’ is the function corre-
sponding to eq. (2) and ‘frequency’ is a function for obtaining the 
reference frequency from a MIDI value (inversion of eq. (2)).  

However, when the median deviates significantly from the ref-
erence, it is not clear whether the initial MIDI value is correct or 
not. In order to clarify this ambiguity, we use a simple heuristic for 
the definition of the final MIDI value. Basically, if the median is 
higher than the upper range limit, the final MIDI value may need to 
be incremented.  

In this way, we determine the frequency value in the frontier of 
the two candidate MIDI values, borderFi, which corresponds to the 
frequency 50 cents above the reference frequency, (7): 
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Figure 4: Illustration of frequency segmentation. 

Then, we count i) the number of frames, numH, for which the 

frequency is above the frontier, i.e., the number of frequency values 
corresponding to the incremented MIDI value and ii) the number of 
frames, numL, where the frequency is below the median. If numH is 
higher than numL, there is evidence that the final MIDI value 
should be changed to the incremented value. Otherwise, it is left 
unchanged. We follow a similar path if the median is below the 
lower range limit, except that here the MIDI value may have to be 
decremented. 

The procedure for frequency segmentation is illustrated in 
Figure 4, for a pitch track from The Mambo King’s “Bella Maria de 
Mi Alma”. There, the constant lines represent the obtained PCFs. 

3.2. Pitch Salience Segmentation 

As for pitch salience segmentation, the objective is to separate 
consecutive notes with the same value, which the MPTC algorithm 
may have interpreted as forming one single note. This requires 
segmentation based on pitch salience minima, which mark the limits 
of each note. In fact, the salience value depends on the evidence of 
pitch for that particular frequency, which is strongly correlated to 
the energy of FF, though not exactly equal. Therefore, saliences are 
lower at the onsets and offsets. Consequently, the envelope of the 
salience curve is similar to an amplitude envelope: it grows at the 
note onset, has then a more steady region and decreases at the 
offset. In this way, notes can be segmented by detecting clear min-
ima in the salience curve. 

As in the frequency segmentation stage, the algorithm starts by 
filtering the salience curve with a ZOH, due to missing values. 
Additionally, as the salience curve may be somewhat noisy, we add 
a low-pass filtering stage in order to smooth it. A zero-phase 
Blackman-sinc filter [15] is used, as follows, (8):  
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In (8), s[k] is the kth pitch salience value in the current track, ‘*’ 
denotes discrete convolution, b[n] represents the Blackman win-
dow, centered at the origin,  and sF[k] is the smoothed curve. The 
parameters fc = 100Hz and W = 9 stand for the cutoff frequency and 
the length of the filter kernel, respectively. K is chosen so as to 
provide unity filter gain at DC. 

Then, we iteratively look for all clear local minima and maxima 
of sF[k]. First, all local minima and maxima are found, coping with 
plateaus. In these situations, the indexes of the corresponding min-
ima/maxima are assigned to the middle of the plateau. 

Then, only clear minima are selected. This is accomplished in a 
recursive procedure that starts by finding the global minimum of 
sF[k]. Followingly, the set of all local maxima is divided into two 
subsets, one to the left and another to the right of the global mini-
mum. The global maximum for each subset is then obtained. 

After that, the global minimum is selected as a clear minima if 
its prominence, i.e., the minimum distance from its amplitude and 
that of both the left and right global maxima, is above the defined 
minimum peak-valley distance, minPvd.  

Finally, the set of all local minima is also divided into two new 
intervals, to the left and right of the global minimum. The described 
procedure is then recursively repeated for each of the new subsets 
until all clear minima and respective prominences are found.  

One difficulty of the proposed approach is its lack of robust-
ness. In fact, the best value for minPvd was found to vary from 
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track to track, along different song excerpts. In fact, a unique value 
for that parameter leads to both missing and extra segmentation 
points. Also, it is sometimes difficult to distinguish between note 
endings and amplitude modulation in some performances. There-
fore, we improved our method by performing onset detection and 
matching the obtained onsets with the candidate segmentation 
points that resulted from our prominent valley detection algorithm.  

In this way, minPvd should receive a low value so that missing 
segmentation points are unlikely. In addition, this parameter ought 
to be adaptive in order to cope with notes having different salience 
ranges. Hence, minPvd was set to 10% of the maximum amplitude 
range of the salience curve under consideration (whose values 
belong to the [0; 100], after the normalization conducted in the 
MPD stage). As a result of its low value, extra false segmentation 
points occur, which are eliminated later on via onset matching.  

Figure 3 illustrates our prominent valley detection algorithm for 
a pitch track of Claudio Roditi’s “Rua Dona Margarida”, where ‘o’ 
represents correct segmentation candidates and ‘*’ denotes extra 
segmentation points.  
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Figure 5: Pitch salience segmentation: candidate points. 

As for onset detection, we based ourselves on [6] and [12], 
where onsets are detected following a band-wise processing ap-
proach. A bank of nearly critical band filters is chosen, which cov-
ers the frequencies from 44Hz to the Nyquist frequency, in a total of 
18 filters. Elliptic filters are employed, so as to guarantee a maxi-
mally sharp cutoff in the transition band. Since it is important to 
maintain the temporal properties of the signal in each band, zero-
phase should be a requirement. Thus, we perform bi-directional 
filtering [15], (9): 

 ( ) ( ) ( ) ( )1* *i i i
BS z S z H z H z−=  (9) 

Here, ( )i
BS z , ( )iH z and ( )S z , represent, respectively, the fil-

tered output and the filter transfer function at band i, and the origi-
nal signal, all in the Z-domain. Due to bi-directional filtering, we 
specified filter parameters in terms of the desired transfer function: 
3rd order filters, with 1.5dB ripple in the pass-band and 20dB of 
rejection in the stop-band. The design parameters are approximately 
doubled as a result of bi-directional filtering, e.g., 6th order filters 
result. As for the cutoff frequencies, the lowest three filters are one-
octave band-pass filters, whereas the remaining are third-octave 
band-pass filters, with no overlapping. Bi-directional filtering 
slightly changes the cutoff frequencies, which was not problematic 
in this case. 

After filtering, onset components are computed. First, we ex-
tract the amplitude envelope of each output via rectify-and-smooth 
[12]. In order to ease calculations, the output of each band is deci-
mated to 200 Hz. Then, the outputs are full-wave rectified and 

smoothed with a 100ms zero-phase half-Hanning window [12], 
w[n], of corresponding width W/2, as in (10). Again, we guarantee 
zero-phase by shifting the window. 
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After rectify-and-smooth, we extract information regarding en-
ergy variations by computing the derivatives of the amplitude enve-

lopes [ ]i
Hs k , [ ]i

Hs k . We half-wave rectify the derivative curve in 

each band, since we are only interested in the points of positive 
energy variations. Then, we linearly sum the computed derivatives 
and look for points of maximum in the resulting derivative curve. In 
other words, we look for clear maxima in the summed derivative. 
This is accomplished in a similar way to the above procedure for 
detection of clear minima, except that now we look for peaks in-
stead of valleys. Here, we normalize the derivative curve to the [0; 
1] interval, and select all peaks, whose saliences are above 0.05. 
Such peaks form the set of original onset candidates.  

Finally, since some peak neighborhoods may be very dense, we 
delete components that are closer than 50 ms to a more intense 
component [6]. The remaining onset components are then normal-
ized to the [0; 1] interval. 

After onset detection, our goal is to validate the candidate seg-
mentation points obtained above. First, all clear salience minima, 
i.e., whose valley prominence is at least 30 units, are kept as defini-
tive segmentation points. Then, for all unclear valleys, onset match-
ing is performed. Hence, if a candidate valley has a close and clear 
onset, i.e., an onset that differs from it by less than 20 ms and whose 
magnitude is above 0.4, that valley is kept as a segmentation point. 
The defined segmentation points are then adjusted to the locations 
of the detected onsets. 

Finally, the obtained segmentation points are used to further 
segment the notes that resulted from the frequency-based segmenta-
tion stage. Also, the starting times of the original unsegmented 
notes are adjusted when close clear onsets are found before the 
original note beginnings (20 ms distance). 

The described procedure for pitch salience segmentation is il-
lustrated in Figure 6, for an excerpt from Claudio Roditi’s “Rua 
Dona Margarida”.  
 

0 1 2 3 4 5 6
55

60

65

70

75

80
Pitch Salience Segmentation

Time (s)

M
ID

I n
ot

e
 n

um
be

r

 

Figure 6: Illustration of p itch salience segmentation. 

There, the gray horizontal lines represent the original annotated 
notes, whereas the black lines denote the extracted notes. The small 
gray vertical lines stand for the correct segmentation points and the 
black vertical ones are the obtained results of our algorithm. An 
almost perfect match is observed in this excerpt. 
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4. EVALUATION EXPERIMENTS 

In order to evaluate the melody detection system, and particularly 
the segmentation algorithm, we collected excerpts of about 6 sec-
onds from 12 songs, encompassing several different genres (pop, 
rock, jazz, classical, latin, …) [9]. The selected songs contain a solo 
(either vocal or instrumental) and accompaniment parts (guitar, 
bass, percussion, other vocals, etc.). Also, the selected excerpts 
contain glissando and frequency modulated notes, as well as con-
secutive notes with the same MIDI value. 

The results for frequency segmentation were very good. All 
glissandos and frequency-modulated notes were correctly captured  
except for a short ornamental note found in one excerpt from Battle-
field Band’s “Snow on the Hills”. As for the timings, they matched 
very well our manually annotated database. Most deviations were 
smaller than 20ms, which may even have resulted from annotation 
errors. Only a few higher deviations occurred in tracks with transi-
tions zones with many missing frequency values. 

As for pitch salience segmentation, the results were also gener-
ally good (e.g., Figure 5 and Figure 6). However, some tracks were 
more problematic, as a result of missing and extra onsets in some 
excerpts (e.g., Enya’s “Only Time”, with a lot of reverb). Onset 
detection in polyphonic recordings is itself a complex task, and so 
salience segmentation may be improved if onset detection algo-
rithms become more reliable.  

As a final word, our melody extraction system obtained 88.3% 
average pitch detection accuracy for the annotated melody notes. 
Some extra notes are still present, a problem that will be addressed 
in the future. Yet, the obtained results are encouraging.  

5. CONCLUSIONS 

We proposed a method for the definition of musical notes from 
pitch tracks. This is an important requirement for melody detection 
in polyphonic musical signals, which is usually ignored. However, 
the explicit definition of notes is an important issue for melody-
based music information retrieval, as well as melody transcription. 
The obtained results were very good, especially for frequency 
segmentation. Pitch salience segmentation may be improved as 
soon as more robust onset detection algorithms for polyphonic 
signals become available. 
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