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ABSTRACT In this paper we present a new approach for the generation of multi-instrument symbolic music
driven by musical emotion. The principal novelty of our approach centres on conditioning a state-of-the-art
transformer based on continuous-valued valence and arousal labels. In addition, we provide a new large-scale
dataset of symbolic music paired with emotion labels in terms of valence and arousal. We evaluate our
approach in a quantitative manner in two ways, first by measuring its note prediction accuracy, and second
via a regression task in the valence-arousal plane. Our results demonstrate that our proposed approaches
outperform conditioning using control tokens which is representative of the current state of the art.

INDEX TERMS Music generation, MIDI, transformers, emotion, affective computing.

I. INTRODUCTION
Affective algorithmic composition (AAC) deals with auto-
matic composition of music based on specific emotions [1].
The use cases of AAC include composing soundtracks for
videos and video games [2], neurofeedback training for med-
ical use [3] and developing brain-computer music interfacing
systems [4]. Although the relationship between music and
emotion is well-studied [5], choosing the ‘‘optimal’’ emotion
model to investigate this relationship is still a debated sub-
ject [6]. Existing work on AAC mostly uses approaches that
belong to two main categories of emotion models, namely
categorical and dimensional [1]. Categorical emotion mod-
els use discrete labels such as happy, sad, angry, and sur-
prised [7]. The studies on dimensional approaches argue
that categorical approaches are insufficient for modeling the
complexities and subtleties of human emotions, and propose
using continuous-valued coordinates that locate points on a
low-dimensional space [8].

Themost common dimensional emotionmodel is Russell’s
circumplexmodel of affect, which is a two-dimensional model
consisting of valence (unpleasantness vs. pleasantness) and
arousal (relaxed vs. aroused) dimensions [9]. Russell also
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maps categorical emotions onto this valence-arousal plane,
providing its exemplary usages, such as the categorical emo-
tion ‘‘calm’’ having high valence and low arousal values, and
‘‘annoyed’’ having low valence and high arousal values.

The early works on AAC used various melodic, harmonic,
and rhythmic features to target specific emotions (see the
overview in [1]). However, in these works, the correspon-
dence between emotions and musical features was only
approximate, and it was generally established using discrete
features and categorical emotions [10], [11]. The advent of
deep learning enabled using complex models on large labeled
datasets and eliminated the necessity of using intermediate
features [12]. Recent AAC models are trained on datasets
containing symbolic music and emotion labels, in an end-to-
end fashion [13]–[15]. However, these works could only use
a very small number of categorical emotion labels, possibly
due to the small sizes of their training datasets.

In this work, we introduce an AAC model that can be
conditioned on continuous coordinates on the valence-arousal
plane. This approach enables the representation of complex
emotions with their subtleties. To this end, we combine sev-
eral datasets, resulting in a labeled MIDI dataset two orders
of magnitude greater than existing labeled MIDI datasets.
Using this dataset, we successfully train large transformer
models [16] on a single GPU, to generate multi-instrument
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symbolic music conditioned on emotion. To the best of our
knowledge, this is the first music generation model that can
be conditioned on both valence and arousal simultaneously,
therefore enabling conditioning on an arbitrary emotion from
the widely-used circumplex model of affect. The main con-
tributions of our work are as follows:
• We create a symbolic music dataset with continuous-
valued labels. These labels can be mapped onto the
valence-arousal plane, bridging symbolic music and per-
ceived emotion. Although this dataset has weak labels,
it is two orders of magnitude larger than the existing
datasets [13], [15], [17].

• We propose multiple architectures for conditional sym-
bolic music generation which outperform the state-of-
the-art architecture in quantitative evaluation.

• Our proposed models additionally allow the usage of
continuous condition values, with the capability of
dynamic conditioning in which a user could arbitrarily
change the condition values throughout the generation.

The remainder of the paper is structured as follows.
In Section II, we discuss the existing work on sequence
modeling, symbolic music and musical emotion datasets.
In Section III, we explain pipeline of dataset creation, model
implementation, training and inference. In Section IV we
mention methods of evaluation. Finally in Section V we
present and discuss the quantitative results.

II. RELATED WORK
A. GENERIC SEQUENCE MODELING
Symbolic music can be represented as sequential data, similar
to text. Hence, the same models can, in principle, be used
for both natural language processing (NLP) and symbolic
music processing. One of the oldest neural network architec-
tures for sequence modeling is the recurrent neural network
(RNN), where a single input sample (token) is processed
at each timestep. The network is trained by calculating the
gradient of the error across each timestep, using the algorithm
named backpropogation through time. However, RNNs aren’t
very successful in modeling long sequences, because as the
sequence grows longer, the backpropagated gradients can
approach zero. This problem is named vanishing gradient
problem. Long short-term memory (LSTM) networks allevi-
ate this problem by using specialized gates [18]. A similar
flavor of RNN named gated recurrent unit (GRU) can achieve
similar performance to LSTM, using a simpler architecture
with fewer parameters [19]. But even these new flavors of
RNN aren’t efficient in processing long sequences, and they
tend to ‘‘forget’’ the old input samples as the sequence grows
longer. The attention mechanism addresses this problem by
explicitly modeling the dependencies between all pairs of
input samples [20]. Finally, the transformer model achieved
the current state-of-the-art results in sequence processing by
incorporating the attention mechanism in a multi-headed and
multi-layered architecture [16].

The original transformer implementation had an encoder
and a decoder network, and it was tested on the task of

machine translation. It is common to use encoder-decoder
architectures for machine translation, where the encoder
processes the source text and the decoder generates the
output [21]. Since the task of language modeling involves
generating text from scratch, it can be seen as analogous
to music generation, hence both tasks can be categorized
under the task of sequence generation. Because there are
no separate source and target sequences, state-of-the-art lan-
guage models only consist of a decoder [22]. Sequence-
generating neural networks are trained with input and target
sequences, which belong to the same domain. Specifically,
the target sequence is one timestep shifted version of the input
sequence, hence for each input token, the network predicts the
next token.

B. CONDITIONAL NATURAL LANGUAGE PROCESSING
Although it is a loosely used term, conditioning refers to con-
trolling a model’s output by providing auxiliary inputs, i.e.,
conditions. The conditions can belong to the same domain
as the input and the target, so it can be possible to train
the model using unlabeled data. Alternatively, they can also
belong to different domains, such as the labels of a labeled
dataset. Even the earliest neural networks for natural lan-
guage processing made use of conditioning. Mikolov and
Zweig developed a language model using conditions such
as topic and genre, where a conditioning vector was created
using a linear layer and concatenated with the hidden state
of the recurrent neural network (RNN) [23]. Sennrich et al.
developed an encoder-decoder RNN model for translation
from English to German, conditioned on politeness [24].
To achieve this they used control tokens specifying the user’s
preference for a formal or informal translation. Conditional
Transformer Language (CTRL) model feeds control tokens
which denote domain, style, topics, etc., into a large trans-
former, obtaining state-of-the-art results in conditional lan-
guage modeling [25]. Krishna et al. performed style transfer
by generating paraphrases, and showed that training separate
models for each style outperforms training a single model that
uses style-specific control tokens [26]. Sheng et al. identified
triggers, i.e. subsequences that generate biased text when fed
as inputs, and use them as primers to induce or balance bias
in language modeling [27]. Smith et al. [28] investigated
controlling the style of dialogue generation, by comparing
three methods, namely, retrieve-and-refine [29], inference-
time iterative refinement [30] and conditional generation
using control tokens [25]. They showed that conditional gen-
eration using control tokens outperforms other methods.

While the majority of the works in the literature use cate-
gorical variables, such as control tokens, to control language
modeling, the problem of image captioning can be formulated
as a text generation task based on images, which are non-
categorical variables. Here, the input image is usually pro-
cessed with a convolutional neural network, and the resulting
features are used for conditioning a separate language model.
While earlier works used RNN as the language model [31],
state-of-the-art models replaced it with a transformer [32].
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Zhu et al. compared different conditioning methods and
observed similar performances [32]. These methods include,
feeding the spatial image features into the cross-attention
layer of the decoder [33], combining image feature with each
word embedding, and feeding the image feature before the
word embeddings [31].

C. SYMBOLIC MUSIC GENERATION
State-of-the-art symbolic music generators make use
of large unlabeled symbolic music datasets. The Lakh
MIDI dataset [34] is a collection of 176581 unlabeled
multi-instrument MIDI files, 45129 of which have been
matched to 31034 entries in the Million Song Dataset [35].
To the best of our knowledge, there are only three pub-
licly available symbolic music datasets with emotion labels,
although their sample sizes are very small. VGMIDI con-
sists of 204 video game soundtracks played by piano and
has continuous-valued labels for valence and arousal [13].
Panda et al. have created a music dataset with discrete emo-
tion labels. The dataset mostly contains audio files and
emotion labels, but for 193 samples, the MIDI files are avail-
able [17]. The EMOPIA dataset contains clips extracted from
387 songs and annotated using discrete labels corresponding
to the four quadrants of the two-dimensional circumplex
model of affect [15].

Early works employing neural networks for music genera-
tion used recurrent neural networks [36]. However, the recent
advent of the transformer model has enabled the usage of
much longer dependencies. The music transformer built upon
the transformer model by incorporating relative positional
information, obtaining state-of-the-art results in symbolic
music generation [37].

It should be noted that any sequence generator can be con-
ditioned using a sub-sequence as a primer at inference time.
In symbolic music generation, this corresponds to feeding
some melody to the model and predicting the melody that
follows it. In this method, the condition and the target belong
to the same domain, hence the models can be trained using
unlabelled data. Other symbolic music generation tasks that
utilize same-domain conditioning are accompaniment gener-
ation [38], [39], interpolation [40], inpainting [41], [42], and
style transfer [43], [44]. MidiNet can generate melodies that
are conditioned on chords, by training on a private dataset that
includes chord information [45]. OpenAI’s MuseNet model,
the state-of-the-art, is trained on a combination of datasets,
and the generation can be conditioned on specific artist
names, genres, or styles, using primer control tokens [46].

It is also possible to use low-level symbolic music features
for conditioning [47]–[49]. These features such as tempo,
note density, pitch range, and tonal tension, can be calculated
automatically, hence there is no need for a labeled dataset.
Tan and Herremans aimed at compensating for the small
size of the labeled VGMIDI dataset, hence they augmented
it with the unlabeled MAESTRO (MIDI and Audio Edited
for Synchronous TRacks and Organization) dataset [50]

using low-level rhythm and note density features to infer the
high-level arousal feature [51].

The creators of the VGMIDI dataset also devised a method
for symbolic music generation conditioned on emotion [13].
Using a genetic algorithm, they fine-tuned the weights of
a pretrained LSTM. This was done separately for posi-
tive and negative valence conditions, resulting in two mod-
els. Both Zhao et al. and Hung et al. generated symbolic
music conditioned on four categorical emotions belonging to
the four quadrants of the valence-arousal plane [14], [15].
Zhao et al. [14] labeled the piano-midi dataset [52] using
categorical labels, and trained a biaxial LSTM [53] on this
labeled dataset. Hung et al. [15], the creators of the EMOPIA
dataset, trained a transformer model that is conditioned using
control tokens [25].

D. SPOTIFY AUDIO FEATURES
The Spotify for Developers application programming inter-
face (API) allows users to access audio features for a
given song from Spotify’s private database [54]. These
audio features are both low- and high-level and are namely
danceability, energy, key, loudness, mode, speechiness,
acousticness, instrumentalness, liveness, valence, and tempo.
The high-level features such as valence are estimated using
machine learning algorithms that are trained on data labeled
by experts [55], [56].

III. METHODOLOGY
A. LAKH-SPOTIFY DATASET
To create a dataset that contains pairs of MIDI files and high-
level labels, we use the Spotify for Developers API and obtain
audio features for the samples from the Lakh MIDI dataset
(LMD). In particular, we use the LMD-matched subset, since
its samples are matched to the entries in the Million Song
Dataset (MSD) [35], hence we can use the metadata from
MSD to search Spotify’s database. Using the track ID for
each MIDI file, we first obtain the song title, artist name,
and Echo Nest song ID. Using the Echo Nest song IDs,
and another dataset named Million Song Dataset Echo Nest
mapping archive [57], we also obtained Spotify track IDs.
Next, for each MIDI sample, we conducted a search using

the Spotify for Developers API. The query for the search was
the associated Spotify ID. If the Spotify ID was not available,
we used the artist name and the song title as the query. The
entire dataset creation pipeline can be seen in Figure 1.

Because the Spotify features belong to the audio versions
of each track, they can only be considered ‘‘weak’’ labels

FIGURE 1. Dataset creation pipeline. The MIDI features are note density,
estimated tempo, and the Spotify features are danceability, energy, key,
loudness, mode, speechiness, acousticness, instrumentalness, liveness,
valence, and tempo.
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for the MIDI versions. Thus, to improve our dataset, we also
included the low-level MIDI features such as note density,
i.e., number of notes per second, the estimated tempo, and the
number of instruments. These low-level features can also be
used to model the arousal dimension of the circumplex model
of affect [1], [51].

For completeness, we derived the low-level MIDI features
for the entire Lakh MIDI dataset, labeled as LMD-full, where
not all the samples are necessarily mapped to the entries in the
MSD. The LMD-full dataset consists of 178561 MIDI files.
Upon investigation, we found that 174270 of those are valid,
and we discarded the remaining corrupt or empty files. The
Lakh MIDI dataset was constructed by downloading MIDI
files from publicly-available sources on the internet and then
keeping the unique files according to their hash values. But
upon examination, we saw that MIDI files with different hash
values could still have the samemusical content, possibly due
to the difference in their metadata. To further filter the data to
keep the MIDI files with unique musical content, we con-
verted the MIDI files to piano rolls, using the pretty_midi
packages, and then re-calculated the hash values. As a result,
we ended up with 152968 MIDI files with unique musical
content.

The matched split of the LakhMIDI dataset, namely LMD-
matched, consists of 31034 tracks from the MSD matched
with 116189 MIDI files from the LMD. Multiple MIDI files
can be matched to the same track, and multiple tracks can
be matched to the same MIDI file. Since our overall aim is
to create a MIDI dataset with labels, we only kept MIDI files
with uniquemusical content aswe have done for the LMD-full
data split. Furthermore, we only kept the best matching track
from the MSD for each MIDI file, based on the matching
scores, in order to have only one set of labels for each MIDI
file. As we have also done with LMD-full, after keeping valid
MIDI files with unique musical content, we ended up with
36545 MIDI files that are matched with entries from the
MSD. Based on the metadata from the MSD, we searched
Spotify’s dataset and were able to obtain audio features for
34791 MIDI files.

In its complete form, we created a dataset which we name
the Lakh-Spotify dataset, that is supplementary to LMD-
matched dataset. We show a sample entry and the included
features in Listing 1. While the precise implementation
details for their retrieval are not publicly available, an expla-
nation of the Spotify audio features can be found in the
online documentation.1 A comparison between our dataset
and existing MIDI datasets with emotion labels is shown in
Table 1.

B. EMOTION-BASED MUSIC GENERATION
1) TRAINING DATA AND PRE-PROCESSING
For our music generation task, we first pre-train our
non-conditional vanilla model on the Lakh Pianoroll Dataset

1https://developer.spotify.com/documentation/
web-api/reference/

Listing 1. A sample entry from proposed dataset.

(LPD) [39], specifically the LPD-5-full subset. This subset
is created by merging the individual tracks in the MIDI files
into five common categories: drums; piano; guitar; bass; and
strings. We chose to use this dataset to have a finite number
of tokens since we represent the instruments explicitly, using
separate note-on and note-off tokens for each instrument,
similar to Payne et al. [46] and Donahue et al. [58]. After
pre-processing, the non-conditional training data split has
96119 songs.

To train our conditional models, we first transfer the avail-
able weights from the vanilla model and then fine-tune on
the LPD-5-matched dataset, namely the 5-instrument piano
roll counterpart of the LMD-matched dataset. Since we pre-
viously generated low- and high-level labels for this dataset
as explained in Section III-A, we used these labels for con-
ditioning. After pre-processing, the conditional training data
split has 27361 songs.
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TABLE 1. Our dataset compared to other MIDI dataset with emotion
labels.

Before tokenization, we convert the piano rolls into MIDI,
using the Pypianoroll package [59]. We use the pretty_midi
package for processing the MIDI data [60]. For tokenization,
we use the event-basedMIDI representation [61]. During pre-
processing, we filter out MIDI note-on and note-off events
that have a pitch outside the range of the piano, i.e., lower than
21 and higher than 108, since these notes aren’t audible using
standard MIDI soundfonts. We use 125 time shift tokens
spanning the range from 8 ms. up to 1 s., in increments
of 8 ms., as done by Oore et al. [61]. Adding a <START>
token denoting the beginning of a sequence, and a <PAD>
token to pad the sequences when necessary, we end up with
1007 tokens for our vanilla (non-conditional) model.

The training input sequences are fixed-sized chunks,
extracted from the MIDI sequences. With a probability of
0.5 the beginning of a chunk corresponds to the beginning
of a random bar, and the <START> token is inserted at the
beginning. Otherwise, the chunk is extracted from a com-
pletely random location, and <START> token is not used.
We found that this process is necessary to be able to gener-
ate sequences that are longer than the training input length,
during inference. We transpose the pitches of all instruments
except drums, by a randomly chosen integer value between
−3 and 3 inclusive. We chose this relatively narrow range
of values to avoid any possible altering of the emotional
character of the songs. Using these two methods to create the
inputs, the effective training data size becomes much larger
than the number of songs in the training data split.

We use two conditioning values to model valence and
arousal, the valence feature from Spotify’s database and the
MIDI note density averaged over the number instruments
respectively. Our preliminary experiments showed that using
the Spotify audio feature for valence for conditional gen-
eration did yield meaningful output, but the energy feature
wasn’t as useful as the arousal feature. This is because both
energy and arousal features are very sensitive to timbre,
and the MIDI format is inadequate for representing timbre.
As a solution, we used the note density of the MIDI files
as the conditioning arousal feature for music generation,
as suggested by Williams et al. [1], and obtained satisfac-
tory results in terms of musical coherence, similar to Tan
and Herremans [51]. In its original form, Spotify’s valence
feature takes values between 0 and 1. For consistency with

the two-dimensional circumplex model of affect and normal-
ization purposes, we shifted and scaled both conditioning
elements to take values between −1 and 1.

To create the testing data split, we ordered the file names
from the LPD-matched subset alphabetically, and reserved
the last 5%, resulting in 1437 songs.We stress that this testing
data is not used during the non-conditional pre-training or
conditional fine-tuning.

When pre-processing the entire dataset, we filtered out the
songs that contain fewer than 3 instrument tracks. We then
removed samples that constitute outliers considering their
valence and arousal values. The threshold values for outliers
were found by multiplying the interquartile range by 1.5,
then subtracting this value from the first quartile and adding
this value to the third quartile. Concerning the distribution
of valence values, we noticed a large peak located exactly at
−1.0 (corresponding to 0.0 in its original form), possibly due
to invalid values, and hence we also removed those samples.

2) MODELS
The backbone of our models is the music transformer [37],
which is a decoder-only transformer using relative position
embeddings. It has 20 layers and a feature dimension of
768. Each layer has 16 heads and a feed-forward layer
with a dimension of 3072. Overall, our model has around
145 million parameters.

We experimented with different methods for conditioning
themusic generation process on the emotion features.Wefirst
implemented the current state-of-the-art approach in condi-
tional sequence generation [15], [25], [46], which we name
discrete-token, where we put the valence and arousal values
into discrete bins and then converted them into control tokens.
In detail, we quantize the condition values using 5 equal-sized
bins, where the central bin index is 0. We chose the number
of bins to model typical verbal quantifiers very low, low,
moderate, high and very high. The control tokens belonging
to valence and arousal are placed before the music tokens,
i.e., concatenated in the sequence dimension, only if the
sample was taken from the beginning of a certain bar. The
resulting sequence is then fed into the transformer. One of
the disadvantages of this model is that, during inference, after
the generation length reaches the input length, the inputs are
truncated from the beginning, hence the control tokens are not
fed. Another disadvantage is the information loss due to the
binning of continuous values.

In our next approach, named continuous-token, we use
the normalized condition values in their continuous form.
We feed each value to a separate linear layer, creating con-
dition vectors that have the same length as the music token
embeddings. Next, the condition vectors and music token
embeddings are concatenated in the sequence dimension and
fed into the transformer. During inference, and even after the
generation length reaches the input length, we still insert the
condition vectors at the beginning of the input sequence.

Our final approach is named continuous-concatenated,
where we create a single vector for the two normalized
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FIGURE 2. Models.

continuous condition values, repeat this vector in the
sequence dimension, and concatenate it with every music
token embedding. The lengths of the conditioning vectors and
token embeddings are 192 and 576 respectively so that the
total feature length of the transformer input is constant across
models. All conditional models are trained by fine-tuning the
pretrained vanilla (non-conditional) model. The representa-
tions of the models can be seen in Figure 2.

C. IMPLEMENTATION DETAILS
We implemented our models using the Pytorch library [62]
and trained them on a singleNVIDIAQuadroRTX6000GPU.
We used the Adam optimizer [63] with a learning rate of
2e−5. Our preliminary experiments confirmed the findings of
Donahue et al. [58], that common learning rates for language
modeling tasks, about 2e−4, are too high forMIDI generation
tasks. We reduced the learning rate to 2e−6 when the training
loss plateaued and kept training until convergence. We used
gradient clipping at a norm of 1, with a dropout rate of 0.1,
a batch size of 4, and an input length of 1216. We used an
autoregressive mask to prevent the model from attending to
future tokens.

D. INFERENCE
At inference, and before the generation starts, the input
sequence only consists of the <START> token, except
for the discrete-token model where we also prepend two

condition tokens for valence and arousal. For the models
continuous-token and continuous-concatenated, the condi-
tion values are fed in parallel at every timestep, as explained
in Section III-B2. We generate the output autoregressively,
where the generated token is appended to the input sequence,
forming the input sequence for the next timestep. When the
maximum input length of 1216 is reached, we use the last
1216 tokens of the generated sequence as the input, so that
the maximum input length is not exceeded. We use nucleus
sampling with p = 0.7 from the temperature adjusted soft-
max distribution [64], with a temperature of 1.2. To avoid
excessive repetitions, if the number of tokens in the nucleus in
the previous step was less than 3, we increase the temperature
slightly.

Changing the condition values throughout generation
allows dynamic conditioning. Although it does not form the
main focus of this work, we informally experimented with
changing the conditions smoothly and linearly, and provide a
set of representative sound examples in the online supporting
material, described in Section IV.

IV. EVALUATION
The evaluation of music generation models is a constantly
evolving area of investigation and currently no consensus
exists. In lieu of pursuing a subjective listening experiment
which may be complex to replicate, we instead opt for
objective, quantitative approaches to evaluation.
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We evaluate our models using the metrics negative log-
likelihood (NLL), top-1, and top-5 accuracies. While mea-
suring top-n accuracy, for each token, the model’s output is
considered accurate if the ground-truth class is within the
top n probabilities of the model’s output. The evaluation
configuration is the same as the training, namely using chunks
with a length of 1216, and calculating the loss for every single
token in the target sequence. This is much more challenging
than only predicting the next token given the full sequence,
since, at the extreme, the model tries to predict the first note
of a song, only given the <START> token. We ensure that the
entirety of the test split is used by sequentially taking non-
overlapping chunks, resulting in 1836 chunks overall.

We additionally perform a quantitative evaluation on sam-
ples generated by our conditional models, by analyzing their
emotional content, as done by Hung et al. [15]. To this end,
we first train a regression model to predict the emotion values
of the samples from the training data split. The architecture
of the regression model is a music transformer with 8 layers,
and the final layer outputs two continuous values, namely the
valence and the arousal. Then using the trained conditional
generation models, we perform inference using a collection
of conditions, and later predict the emotional content of the
generated samples using the trained regression model. As the
error metric, we use the normalized L1-distance between
the predictions of the regression model and the conditions
that were fed during inference. To make a fair comparison
against the discrete-token model, the condition values are
chosen as the midpoints of the bins used by the discrete
condition tokens, namely−0.8,−0.4, 0, 0.4, and 0.8. Using a
combination of 5 values for valence, and 5 values for arousal,
we end up with a collection of 25 condition value pairs.
For each model and each condition, we generate 8 samples
without ‘‘cherry-picking’’ and report the average error. Each
sample has 4096 tokens. The regression model takes inputs
with a length of 1216, similar to the generator. Samples are
fed into the regression model using a sliding window with
50% overlap, and outputs are averaged. The overall scheme
for evaluating generated samples is visualized in Figure 3.

We also make the generated samples available online.2 As
explained previously, using the conditional models, we gener-
ate 200 samples for each. Since the generated melodies have
a fixed number of tokens, their durations in time are inversely
proportional to their tempo. The melodies generated with the
lowest arousal conditions are on average 159.6 seconds long.
We also generate 200 more samples using the vanilla model,
with no conditioning. To demonstrate the dynamic condi-
tioning ability of our models qualitatively, we additionally
generate 4 samples per model, using the continuous-token
and continuous-concatenated models. Overall, we present
804 samples. The midi files are rendered into mp3 format
using the Fluidsynth software3 and FluidR3_GM soundfont.4

2serkansulun.com/midi
3https://www.fluidsynth.org/
4https://archive.org/details/fluidr3-gm-gs

FIGURE 3. Evaluation of inference.

V. RESULTS AND DISCUSSION
The performance of the models according to the predic-
tion accuracy-based evaluation can be seen in Table 2. The
continuous-concatenated model outperforms other models,
including the state-of-the-art discrete-token model, across all
metrics, by a considerable margin especially for negative
log-likelihood and top-1 accuracy.

TABLE 2. Performance of the models during evaluation. NLL refers to
negative log-likelihood, where lower is better. Top-1 and Top-5 refer to
the accuracy, where higher is better.

In Table 3 we show the results for the regression-based
evaluation and demonstrate that continuous-concatenated
model outperforms others in terms of its ability to convey
emotion. Note, here the vanilla approach is not included since
it is not conditioned on any emotion information.

TABLE 3. Performance of the conditional models during inference. Error
refers to the normalized L1 distance between conditions fed during
inference and the output of the trained regression which consumes the
generated samples.

When considering the difference in performance among
the presented models, we speculate that the main short-
coming of the discrete-token and continuous-token models,
as opposed to the continuous-concatenatedmodel, is that they
attribute the same importance to the condition values as the
tokens in the sequence. We argue that while each token in
the sequence is more useful in making local predictions, i.e.,
predicting the tokens that are near, the condition values have
a global usage since they directly affect the entire generated
sample. Our proposed continuous-concatenated model can
fully exploit the condition information by incorporating it
into every single embedding of the input sequence for the
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transformer. Both our proposed methods can additionally
use continuous-valued conditions, and thus allow much finer
control over the generation process. These methods also per-
mit the user to change the conditions throughout the gener-
ation, theoretically creating more complex and progressive
compositions.

Overall, we take a step towards establishing a more
explicit connection between emotion and symbolic music.
We identify the main challenge as the lack of symbolic
music data paired with emotion labels. To tackle this,
we augment the Lakh MIDI dataset, one of the largest
symbolic music datasets available, with continuous-valued
labels from the Spotify Developers API. While low-level
features such as note density can loosely represent arousal,
it is challenging to derive a similar representation for
the valence dimension, especially using continuous-valued
labels. We show that the valence values in our proposed
dataset are indeed useful in bridging this gap, allowing us
to generate long, coherent, multi-instrument symbolic music
based on continuous-valued conditions taken arbitrarily from
the valence-arousal plane.

For reproducibility and to help future research, we open-
source our dataset and the code that we used to prepare
it.5 In the NLP community, training large transformers from
scratch is a rare practice that is typically replaced by trans-
fer learning, namely by fine-tuning open-source pre-trained
models. However, a similar phenomenon does not exist in
the field of symbolic music generation. Thus, we additionally
open-source our trained models to allow other researchers
to cut down on the time and resources for training, with
transfer learning. To the best of our knowledge, ours are the
largest open-source symbolic music generation models, that
are trained on the largest multi-instrument symbolic music
dataset, in the literature.

In future work we intend to investigate the potential for
conditional music generation directly in the audio domain.
In this way we seek to build upon existing models such as
WaveNet [65], SampleRNN [66], and Jukebox [67]. One par-
ticular limitation in raw audio generation is the audio quality
of the output, and the considerable computational demands
of generating high resolution audio signals. On this basis,
we envisage the potential for a two-stage approach which
can combine lower quality raw audio generation with audio
enhancement techniques, e.g., [67]–[69], as well as exploring
hybrid approaches which simultaneously leverage symbolic
and audio data.
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