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Abstract: Classical machine learning techniques have dominated Music Emotion Recognition. How- 1

ever, improvements have slowed down due to the complex and time-consuming task of handcrafting 2

new emotionally relevant audio features. Deep Learning methods have recently gained popularity in 3

the field because of their ability to automatically learn relevant features from spectral representations 4

of songs, eliminating such necessity. Nonetheless, there are limitations, such as the need for large 5

amounts of quality labeled data, a common problem in MER research. To understand the effectiveness 6

of these techniques, a comparison study using various classical machine learning and deep learning 7

methods was conducted. The results showed that using an ensemble of a Dense Neural Network 8

and a Convolutional Neural Network architecture resulted in a state-of-the-art 80.20% F1 score, an 9

improvement of around 5% considering the best baseline results, concluding that future research 10

should take advantage of both paradigms, that is, combining handcrafted features with feature 11

learning. 12

Keywords: Music Information Retrieval; Music Emotion Recognition; Deep Learning 13

1. Introduction 14

Most early attempts at Music Emotion Recognition (MER) tackled classical machine 15

learning (ML) techniques, where much of the effort is put into feature engineering [1–4]. The 16

usual pipeline for improving the classification of such techniques involves identifying gaps 17

in musical dimensions, such as melody, harmony, rhythm, dynamics, tone color (timbre), 18

expressivity, texture, and form, designing feature extraction algorithms that can capture 19

those dimensions, and then training ML models on those extracted features. However, 20

due to the complexity involved in the process, most current works only employ low- and 21

mid-level descriptors, many proposed for other problems of the broader Music Information 22

Retrieval (MIR) field. One recent exception is the work by Panda et al. [5], with the 23

development of new emotionally relevant features based on audio analysis, which resulted 24

in 76% accuracy in the 4 Quadrant Audio Emotion Dataset (4QAED) dataset. The study 25

aimed to create new features to break the current MER glass ceiling, as observed in the 26

MIREX challenge, where results attained a plateau of about 69% accuracy [5]. However, 27

the design process of such features is a time-consuming and challenging task that requires 28

expert domain knowledge in signal processing, musicology, and ML. 29

Deep learning (DL) has recently seen a rise in popularity for its ability to reduce such 30

workloads due to its ability to learn relevant features from raw input data automatically 31

and has been applied in a variety of fields. Recently, various DL methods have been applied 32

to tackle MER, many of which employ Convolutional Neural Networks (CNN), Recurrent 33

Neural Networks (RNN), and various combinations of the two [6–8]. Typically, raw input 34

data is represented by a spectrogram, but end-to-end architectures that do not require 35

previous processing have also been proposed [9,10]. In addition, learning paradigms, such 36

as transfer learning from other domains with larger available datasets [11,12], and different 37
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data representations, such as from embeddings that can be extracted from pre-trained 38

CNNs [13] were also proposed. 39

Despite the potential seen in the field of Computer Vision, these techniques have 40

limitations, such as the need for large amounts of quality labeled data, a common problem 41

since the infancy of the MER field. Classical ML methodologies have previously dealt with 42

this problem by applying audio transformations to the available samples and obtaining new 43

synthesized samples to increase the training set for the chosen algorithms. Since previous 44

studies on this matter focused especially on singing voice [14] and genre recognition [15], 45

the impact of data augmentations specifically for MER is not well known and needs to be 46

assessed. 47

A drawback of methodologies based on neural networks is their lack of interpretability 48

given their black-box nature, meaning that it is not known what kinds of features deemed 49

relevant for the data are learned and extracted during the training process. For the case 50

of MIR, questions have arisen in the past regarding whether these networks are learning 51

relevant information for the task at hand, such as genre, with the same concerns applicable 52

to emotion. 53

However, a study by Choi et al. [16] shows that a 5-layer convolutional portion of a 54

CNN learns to extract features closely related to melody, harmony, percussion, and texture 55

for 4 very different songs through a process called auralisation. More recently, Won et al. 56

[17] demonstrates that a self-attention mechanism is able to learn relevant information for 57

instrument, genre, and emotion detection using heatmaps to visualize which areas of the 58

spectrograms are taken into account to perform classification. 59

Taking into account the various promising paths to exploit DL-based approaches, 60

in this article, we conduct a comparison study of various classical ML and DL method- 61

ologies applied to MER to understand the effectiveness of these techniques, using the 62

4QAED dataset complemented with a recent expansion. Methodologies include archi- 63

tectural improvements, the inclusion of audio augmentation techniques, experimenting 64

with alternative input data representations, and exploiting knowledge from related tasks. 65

Moreover, the expansion of the baseline dataset enabled the study of the impact of dataset 66

size on the classification accuracy of DL models. 67

The output of this study resulted in the following contributions: a) an ensemble of 68

a Dense Neural Network (DNN) and a CNN architecture resulted in a state-of-the-art 69

80.20% F1 score (based on data augmentation); ii) a thorough comparison between possible 70

methodological improvements for solving MER; iii) an analysis of the impact of dataset 71

size and class balancing on classification performance. 72

2. Background 73

The connection between music and emotions has long been a focus of research in 74

music psychology. Emotion from a musical piece can be examined through the lens of: 75

i) expressed, or the emotion the composer or performer tries to convey to the listener; ii) 76

perceived, or which emotion is identified by the listener; iii) induced, or the emotion felt by 77

the listener. These different types of analyses may produce equal or completely different 78

interpretations of the emotional content of a song, but a key difference lies in the different 79

levels of subjectivity [19]. Perceived emotion has been shown to provide the highest level 80

of objectivity among the types as mentioned earlier and can be found as the focus of most 81

works in the MER literature. 82

Various models have been proposed to represent the spectrum of human emotion, ei- 83

ther by clustering similar emotions, also designated as categorical models, such as Hevner’s 84

Adjective Circle [20], or by having a multi-dimensional plane where the axes represent 85

different biological systems to mimic how the brain perceives emotion, intuitively re- 86

ferred to as dimensional models in the literature, the most widely accepted being Russell’s 87

Circumplex Model [21], seen in Figure 1. 88

Many scholars have raised concerns about both categories of models. On one hand, cat- 89

egorical models do not realistically reflect the continuous nature of the emotional spectrum, 90
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Figure 1. Russell’s Circumplex Model. Emotions can be mapped with continuous values, as shown
by the words in each isolated point, or as discrete labels, representing a broader emotion.

leading to limitations in pinpointing the exact emotion. On the other hand, dimensional 91

models are known to have a high degree of complexity because of the basis on which they 92

are constructed, and although they may provide more accurate accounts of the emotions 93

reported by annotators, prior knowledge of their inner workings is required to properly do 94

so, severely impacting the range of annotators using such models and the accuracy of the 95

output annotations [22]. 96

Recently, Panda et al. [5] proposed the 4QAED dataset using labels from experts 97

found on the AllMusic API1. Through a thorough process, these labels were translated into 98

arousal and valence values, collectively called A-V values, the y- and x-axes of Russell’s 99

model, respectively. Instead of maintaining the continuous approach of this model, all 100

annotations were grouped into one of the four quadrants, making them discrete and more 101

easily understood as categorical models. A more in-depth explanation of the dataset, as 102

well as its expansion, is provided in the following section. 103

3. Methods 104

This section describes the methodologies explored in this work, ranging from architec- 105

tural improvements to alternative data representation, data augmentation techniques, and 106

knowledge transfer. 107

We began by defining both ML and DL baseline methodologies, discussed in more 108

detail in Section 3.1, and evaluating them on multiple datasets. The obtained results provide 109

a comparison point with the explored methodologies, in addition to making it possible to 110

assess the impact of increased dataset size and class imbalance. 111

The remaining section explains the explored methodologies and what led us to con- 112

sider them. These include architectural improvements that exploit time-related information 113

(Section 3.2.1), architectures that learn features from portions of whole samples (Section 114

3.2.2), alternative input representations obtained through high-dimensional projections 115

(Section 3.2.3), increased training data through sample synthetization (Section 3.2.4), and 116

exploiting learned information from related tasks (Section 3.2.5). 117

1 https://tivo.stoplight.io/docs/music-metadata-api/ZG9jOjQ3NjAxNTk-introduction



Version March 21, 2024 submitted to Sensors 4 of 18

3.1. Baseline Architectures 118

As a baseline for our experiments, we first considered the state-of-the-art model from 119

Panda et al., a simple Support Vector Machine (SVM) classifier (classical baseline) in which 120

hyperparameters were fine-tuned for each dataset experimented using the same set of 121

optimal features found in the original work. 122

A CNN architecture based on the work by Choi et al. [6] (see Figure 2) was previously 123

developed by our team and is used as the DL baseline. The original architecture was 124

adapted so that, instead of outputting a binary vector, the extracted features are processed 125

on a small DNN that predicts one of the four quadrants from Russell’s model. This baseline 126

is essential for assessing the viability of new DL architectures on our datasets and provides 127

a basis for further improvement. The Stochastic Gradient Descent (SGD) optimizer was 128

used to train the DL Baseline, and the following hyperparameters were found to be optimal: 129

batch size = 150, epochs = 200, learning rate = 0.01. An early stopping strategy was 130

employed, which halted training when the accuracy of the train set reached a value above 131

or equal to 90%, as it overfits above this value as found from previous experimentation. 132

These points are the default configuration for the remaining approaches described in this 133

section unless explicitly stated otherwise. 134

Figure 2. DL baseline architecture. The frontend portion first extracts relevant features inferred from the input data, which are then fed
to the backend for classification.

3.2. Explored Methodologies 135

We began by reviewing recently proposed DL approaches for MER. It is important to 136

note that this work focuses on improving the classification of static emotion (Static MER) 137

in music. We do not delve into emotion variation detection (MEVD), a higher complexity 138

problem based on identifying the emotional content and its fluctuations across an entire 139

music piece, or other modalities such as lyrics. 140

Recently, Won et al. [24] conducted a comparison study on various DL architectures, 141

including the Convolutional RNN (CRNN) architecture, an end-to-end approach, a simple 142

architecture that takes small segments of the whole sample as input, and an architecture 143

with trainable harmonic filters. Implementations for all of the abovementioned are available 144

in a GitHub repository2, which we adapted for experimenting with our data. The remainder 145

of this section briefly describes the explored approaches, including existing and novel ones. 146

2 https://github.com/minzwon/sota-music-tagging-models
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Figure 3. CRNN architecture. The number of filters applied to the input data is larger when compared with the DL baseline architecture,
and, as a result, the extracted information is more heavily downsampled. In addition, the backend portion replaces the dense network
with two GRU units to process time-related information.

3.2.1. Architecture Improvements 147

As a starting point to improve our baseline architecture, two Gated Recurrent Units 148

(GRU), reported in its original paper to be more stable to train than Long-Short Term 149

Memory units [23], were added to our baseline CNN architecture in an attempt to process 150

and extract time-domain-specific features. To understand how appropriate the CNN 151

portion of this network is for such a task, an implementation of the CRNN architecture was 152

adapted from the aforementioned repository. 153

In addition, one of the best-performing methodologies was a simple ensemble of 154

the baseline CNN with a DNN fed with all the extracted features, previously pre-trained 155

and with its weights frozen, that fuses the information before being post-processed by a 156

smaller DNN. It was decided to fuse information from both networks at the feature level 157

to understand how handcrafted and learned features complement each other. As stated 158

before, the reason for the lack of improvement in classical approaches is missing features 159

relevant for emotion recognition. With the inclusion of the learned features from the CNN 160

portion, we should observe how relevant these are in relation to the handcrafted features. 161

To understand the impact of information fusion at the feature level, we first conducted 162

experiments using only a DNN architecture. The full set of 1714 features was considered, 163

as well as the top 100 features used for training the SVM baseline. The best-performing 164

model is incorporated into the previously described ensemble. 165

Figure 4. DNN architectures. The input feature sets are processed, akin to a feature selection process, and classified.

The idea is to combine the information extracted from both approaches to improve the 166

overall classification. To improve the capabilities of the CNN portion, we pre-train it with 167
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synthetic samples resulting from classical audio augmentation techniques (time shifting, 168

time stretching, pitch, and power shifting, as discussed below) already studied in the same 169

work, referred to as Hybrid Augmented for clear distinction. The architecture is depicted 170

in Figure 5 171

Figure 5. Hybrid Augmented architecture. Both feature extraction portions are pre-trained with the train set samples and synthesized
samples for the DL feature extraction portion exclusively. Late feature fusion is performed before classification.

3.2.2. Segment-level Approaches 172

Our previous work focused on using the full 30-second samples available on 4QAED 173

as the model’s input. However, humans can identify emotions in smaller samples with 174

some ease. Considering the small size of the datasets used for evaluating the explored 175

methodologies, breaking down these samples into smaller segments has the added advan- 176

tage of increasing the number of training examples, an indirect form of data augmentation. 177

By considering small inputs at a time, the network is also able to learn local-level features 178

more easily when compared with sample-level approaches. A simple model that applies 179

this idea is presented in [24], referred to as ShortChunk CNN. The architecture is presented 180

in Figure 6. To train the model, each segment was treated as its own sample. In contrast, 181

for testing, the mode of all segments’ predictions pertaining to a sample is used as the 182

final prediction, also known as a many-to-one approach. The best hyperparameters values 183

found were: batch size = 50, epochs = 100, learning rate = 0.001. 184

Another usual architectural component in previous DL works is using a set of convo- 185

lutional layers to downsample and extract features from spectral representations, requiring 186

the definition of parameters for generating such a representation. Although the ideal 187

parameters have been previously studied, as is the case in [6], they are not architecture- 188

independent. A solution to this problem would be to work directly with the raw audio 189

signal without pre-processing and extracting features directly from it. This was achieved 190

by Lee et al. [9] who proposed a model referred to as Sample CNN, which uses a sequence 191

of one-dimensional convolutional blocks, very similar to the two-dimensional variant, 192

and processes the outcome in a dense layer. With these architectures, the best values for 193

the hyperparameters were almost the same as those for the ShortChunk CNN, with the 194

exception of the number of epochs, which increased to 150. It is important to note that the 195

original models were designed to output one of a set of labels, differing depending on the 196
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dataset used, and were translated from PyTorch to TensorFlow with reworked output to 197

categorical labels. 198

Figure 6. ShortChunk CNN architecture. The model processes smaller chunks of a full sample at a time, increasing the data available
for training. The full sample is classified by aggregating the smaller chunks’ predictions.

3.2.3. Data Representations 199

As mentioned previously, when describing the Sample CNN architecture, 200

Mel-spectrograms may not be the optimal representation for training a model to classify 201

emotions. Embeddings, or the mapped representation of a sample in a lower-dimensional 202

space learned from the original data’s space, are very popular in Natural Language Pro- 203

cessing (NLP) tasks, such as for Speech Emotion Recognition (SER), due to the natural 204

translation of words to smaller dimensions. The same idea was applied to audio by Koh 205

et al. [13], utilizing the OpenL3 deep audio embedding library3 and training classical 206

ML techniques classifier on its output. The embeddings are obtained directly from a 207

Mel-spectrogram representation, resulting in a feature matrix of 298×512. 208

Results were provided for the baseline dataset for this study, reaching a 72% F1 209

score using the Random Forest (RF) classifier of scikit-learn library4, very close to the 210

classical baseline. The experiment was replicated and extended to the baseline dataset 211

extension. The embeddings provided by the autoencoder mentioned when describing the 212

DeepSMOTE-like approach in the following subsection were also tested for comparison. 213

3.2.4. Data Augmentation 214

We further explored both classic and DL approaches for data augmentation. For the 215

former, several audio augmentation techniques were applied directly to the audio signal of 216

a sample, randomly increasing or decreasing a factor associated with the transformation, 217

namely, time shifting (shifts start or end by a maximum of 5 seconds), pitch shifting 218

(increasing or decreasing pitch by a maximum of 2 semitones), time stretching (speeding 219

up or slowing down by a maximum of 50%), and power shifting (increasing or decreasing 220

amplitude by a maximum of 10 dB). Continuing in this line, we experimented with more of 221

these techniques using the audiomentations library5, namely: 222

3 https://github.com/marl/openl3
4 https://scikit-learn.org/stable/
5 https://github.com/iver56/audiomentations
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• Time-Frequency Masking (TFM), popular in the field of SER, which applies a mask 223

over a portion of the time- and frequency-domain [25]; 224

• Seven-Band Parametric Equalization (SB), applying a seven-filter pass on the sample, 225

changing its timbre in the process; 226

• Tanh Distortion (TD), applying a distortion similar to an electric guitar; 227

• Random Gain (RG), randomly increasing or decreasing the loudness of a sample; 228

• Background Noise (BG), which adds random background noise from a specified set of 229

samples, in our case the ESC-50 dataset [26]. 230

For each transformation, a random value is picked from a set of predefined intervals 231

to be used as the factor for the transformation, e.g., RG predefined interval is between 232

[-12.0, 12.0] dB. These intervals were left unchanged from the defaults found in the library. 233

It is important to note that a transformation is only applied to each sample once. This 234

means that when experimenting with a single transformation, the training data is effectively 235

doubled, while for the previously discussed Hybrid Augmented approach, the training 236

data is increased fourfold since we are applying four transformations at a time. 237

Figure 7. Sample CNN architecture. The process for classifying samples is similar to ShortChunk CNN; however, the features used for
classification are learned directly from the raw audio sample.

As for DL-based techniques, Generative Adversarial Networks (GANs) [27] were 238

previously tested with underwhelming results. Not only is the process of training a 239

GAN overly complex when compared with classical audio augmentation, but the lack of 240

constraints when sampling the learned space from the data leads to noisy and emotionally 241

ambiguous samples. 242

To impose some constraints on the generation of samples, the SMOTE [28], or Synthetic 243

Minority Oversampling Technique, was considered. Although it was apparent that directly 244

applying this technique to the raw audio signal produces even noisier samples than the 245

GAN, owing to the high dimensionality of the audio signal, we used the autoencoder used 246

for training the GAN to reduce significantly the number of dimensions of a sample akin to 247

the DeepSMOTE approach proposed by Dablain et al. [29]. A raw sample in a waveform 248

representation presents approximately 482k values or dimensions to represent a 30-second 249

sample with a 16kHz sampling rate. In contrast, by passing the Mel-spectrogram repre- 250

sentation through the autoencoder, we retrieve an embedded representation comprised of 251

60416 values, a significant decrease for improving the SMOTE’ing process. To the best of 252

our knowledge, this is the first application of the technique to music samples. 253
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One problem with this approach is the choice of SMOTE implementation because 254

many alternatives exist, many of which have domain-specific applications. Regarding 255

which is the most optimal SMOTE variant to use, the article by Kovács [30] as well as 256

the accompanying repository6, are a comprehensive resource to better support a decision, 257

presenting a comparison of over 80 variants. Because of this large number, we only 258

experimented with the most widely used variants, SMOTE, BordelineSMOTE, and Adasyn. 259

BorderlineSMOTE, specifically the Borderline_SMOTE2 implementation, was found to be 260

the best fit based on preliminary tests. In addition, it was found from these tests that 25 261

synthesized samples for each quadrant, in addition to the original ones, were optimal, with 262

such an increase accompanied by an increased batch size of 200. 263

As a final note, precautions are taken to prevent synthesized samples from leaking 264

to the test set. It is possible that by modifying the samples the same also happens to the 265

underlying emotion. For example, when we apply pitch shifting with a +2 factor, i.e., 266

an increase of 2 semitones, to a melancholic song, we may be making the song happier. 267

Manual re-annotating the synthesized samples is not at all feasible due to the necessary 268

resources, and such efforts should be directed to new original samples that can increase the 269

dataset as a whole. 270

To ensure that the synthesized samples do not distort the evaluation of the model, 271

we first assign each original sample to the train or test set, and only after the synthesized 272

samples are added to the train set, only if the corresponding original sample is already 273

present. This guarantees that no synthesized sample is used for evaluation and preserves 274

the viability of the evaluation metrics. With this in mind, the benefits of using a data 275

augmentation technique can be assessed indirectly by the performance of the model in 276

question. If it increases, we can infer that the techniques involved are beneficial for our 277

tasks and that they most likely preserve the original emotion, while if they considerably 278

change the emotion, we would observe a decrease in performance. 279

3.2.5. Transfer Learning 280

Another approach is to transfer the learned knowledge from a domain with a larger 281

data corpus to deal with the reduced size of the dataset, which in practice means transferring 282

the learned weights from a network to a new network with a different task, freezing them 283

to avoid information loss, and replacing the output portion of the model appropriate for the 284

task at hand. Our team previously experimented with exploiting the learned weights of a 285

network trained for genre recognition for MER. Here, the idea was not to use a larger dataset 286

but to take advantage of the learned information pertaining to genres to improve emotion 287

recognition since specific genres are tightly connected to particular emotion quadrants, e.g., 288

heavy metal and Q2, reggae, and Q4 [31]. 289

In a similar fashion, we experimented with transferring the knowledge from the 290

models presented by Park et al. [12] developed for artist classification. For the purposes of 291

this work, the simpler model was adapted, consisting of a sequence of 5 one-dimensional 292

convolutional blocks, a global average pooling layer, and a dense layer that outputs a 293

256-value vector, as seen in Figure 8. For the experiment, the model’s weights, which can be 294

retrieved from the article’s accompanying repository7, were loaded and frozen, and the last 295

layer was replaced with an also dense layer outputting to one of the quadrants. Differences 296

from the DL Baseline configurations include using the Adam optimizer in place of SGD, as 297

per the original implementation. Moreover, almost identical hyperparameters were used, 298

except for a decrease in the batch size to 100. 299

Another experiment was performed to understand the impact of applying the informa- 300

tion gained from larger datasets for MER, using the available weights for the CRNN model 301

trained on the MagnaTagATune (MTAT) [32], MTG-Jamendo (JAM) [33] and MSD dataset 302

on Won’s repository, referred to as CRNN TL. It is also important to note that these weights 303

6 https://github.com/analyticalmindsltd/smote_variants
7 https://github.com/jongpillee/ismir2018-artist
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Figure 8. Architecture of CNN pre-trained on artists classification task. The feature extraction portion is frozen; only the classification
portion is trained.

result from training the CRNN to output for the available set of labels, i.e., multi-label 304

classification. The optimization process here is adaptive, meaning that it changes at certain 305

epochs, beginning with Adam with a learning rate of 0.001 until epoch 80, then changes 306

to the SGD optimizer with a learning rate of 0.0001, decreasing to 0.00001 at epoch 100, 307

and finally to 0.000001 at epoch 120. The authors state that this leads to a more stable 308

training process and ensures optimal results at 200 epochs with only a batch size of 16, both 309

of which are used as these hyperparameter values, in addition to reducing the necessary 310

computational resources for model optimization. 311

4. Evaluation Details 312

In this section, we introduce the datasets used for evaluating the presented methods 313

(Section 4.1), data pre-processing details (Section 4.2), and the experimental setup used to 314

conduct evaluation (Section 4.3). 315

4.1. Datasets 316

As mentioned in Section 2, the dataset used for the conducted experiments is the 317

4QAED dataset8 previously created by our team [5]. The dataset contains 900 samples 318

evenly distributed among the four quadrants of Russell’s model. Each corresponds to 319

a set of emotions: Q1 represents happiness and excitement; Q2, anger and frustration; 320

Q3, sadness and melancholy; and Q4, serenity and contentment. The dataset provides 321

30-second excerpts of the complete songs and two sets of emotionally relevant handcrafted 322

features as data sources. The two sets of features contain: i) 1714 found to be relevant for 323

emotion recognition; ii) and the top 100 features obtained after feature selection. Regarding 324

the targets, the dataset provides categorical labels for one of the four quadrants. 325

Table 1. Datasets used for evaluation with respective sample distribution.

Dataset Q1 Q2 Q3 Q4 Total

Original-4QAED 225 225 225 225 900
New-4QAED C 434 440 397 358 1629
New-4QAED B 343 343 343 343 1372

8 http://mir.dei.uc.pt/resources/MER_audio_taffc_dataset.zip
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As part of this work, the dataset in question was expanded, increasing the number 326

of available samples from 900 to 1629. Henceforth, each dataset is referred to as Original- 327

4QAED and New-4QAED. Furthermore, as can be seen in Table 1, besides the complete (C), 328

unbalanced, New-4QAED dataset, a balanced subset (B), comprising 1372 samples, was 329

also experimented with. The latter also takes into account the distribution of genre in each 330

quadrant to avoid possible bias. 331

4.2. Data Preprocessing 332

To get the Mel-spectrogram representations of the samples used as input data for 333

these methodologies, the librosa9 Python library was used with default parameters. One 334

exception is the sample rate, which was set to 16 kHz after experimenting with different 335

values. 336

Although higher sample rates are normally used due to more accurately presenting au- 337

ditory information, the resulting Mel-spectrograms are significantly more computationally 338

heavy for the model to process. Other studies have also found that DL-based architectures 339

are robust to the decrease of information related to lower sample rates [34]. 340

4.3. Experimental Setup 341

The performed experiments were conducted on a shared server with two Intel Xeon 342

Silver 4214 CPU with a total of 48 cores running at a clock speed of 2.20GHz as well as three 343

NVIDIA Quadro P500 with 16GB of dedicated memory, the latter necessary for developing 344

and evaluating each network in a reasonable time. Due to high demand at the time of 345

evaluation, Google Collaborator10 was also used, where it offered a very similar GPU and 346

either an NVIDIA P100 PCIE with 16GB or NVIDIA T4 with the same amount of dedicated 347

memory depending on availability. 348

Most of the experimented DL approaches were developed using the TensorFlow’s11
349

Python library, allowing us to build and optimize complex models in a simple and quick 350

manner. The PyTorch12 library was also used to utilize the provided weights for the 351

pre-trained CRNN models discussed in Section 3.2.5. 352

5. Experimental Results and Discussion 353

Results for each methodology and considered datasets are presented according to the 354

high-level division discussed in Section 3.2. 355

The presented metrics are Precision, i.e., how many samples of a given class are 356

predicted as this class, Recall, i.e., how many samples are correctly predicted as belonging 357

to a given class, and F1 score, i.e., the harmonic mean between precision and recall. These 358

are obtained through the widely used scikit-learn Python library13. 359

The evaluation process to obtain these metrics consisted of firstly optimizing the 360

relevant hyperparameters on Original-4QAED, experimenting with a set of possible values 361

in a grid search strategy to serve as a baseline for performance on New-4QAED, and 362

utilizing these same parameters to ensure a fair comparison. 363

For each set of hyperparameters, a 10-fold and 10-repetition stratified cross-validation 364

strategy is used, totaling 100 different train-test splits, as it is the accepted approach to deal 365

with the small dataset sizes and provide reliable results. For each repetition, the dataset is 366

randomly split into 10 different portions while ensuring equal distribution of quadrants as 367

found in the original dataset, using 9 portions for training and 1 for testing. The portion 368

held out for testing changes for each train-test split, resulting in 10 different combinations 369

for each repetition. An example of the process for obtaining the train-test splits can be seen 370

in Figure 9. 371

9 https://github.com/librosa/librosa
10 https://colab.research.google.com/
11 https://github.com/tensorflow/tensorflow
12 https://pytorch.org/
13 https://scikit-learn.org/stable/
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Figure 9. Example of 10-fold stratified cross-validation process for obtaining train-test splits. Red
folds are part of the train set, while green folds are the test set. Each fold retains the original class
distribution of the full dataset.

Table 2. Precision, recall and F1 score of baseline methodologies across datasets.

Methodology Metrics Original-4QAED New-4QAED C New-4QAED B

SVM Baseline
Precision 75.63% 69.92% 70.03%

Recall 76.03% 70.26% 70.05%
F1 Score 75.59% 69.79% 69.82%

DL Baseline
Precision 61.60% 62.46% 61.39%

Recall 61.21% 63.99% 63.42%
F1 Score 60.62% 61.66% 60.28%

The hyperparameters’ values tested using this method differed from methodology to 372

methodology. For those based on the baseline CNN, neighboring values were tested to 373

account for possible variations in the data. Otherwise, the same process was followed using 374

values from the original articles if available, using the baseline CNN values as backup. 375

Although a more thorough analysis would require that the same process be repeated 376

when changing the dataset, this was not possible due to resource constraints. Regardless, 377

conclusions can be drawn from the impact of different sizes and quadrant distributions of 378

a dataset. 379

A decision was also made regarding the multiple classical audio augmentation tech- 380

niques and multiple datasets on the evaluated CRNN TL methodology to proceed with the 381

evaluation on New-4QAED only if the performance on Original-4QAED at least matched 382

the DL baseline methodology. This is reflected in the absence of results in Tables 6 and 7. 383
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Table 3. Precision, recall, and F1 score of methodologies with improved architectures across datasets.

Methodology Metrics Original-4QAED New-4QAED C New-4QAED B

Baseline CNN With GRU
Precision 61.58% 62.29% 60.69%

Recall 61.01% 62.46% 60.01%
F1 Score 60.07% 61.99% 58.85%

CRNN
Precision 65.14% 64.20% 63.31%

Recall 65.07% 64.03% 63.34%
F1 Score 64.63% 64.09% 62.54%

DNN Precision 69.41% 69.01% 68.58%
With 1714 Recall 69.27% 69.00% 68.40%

Feature Set F1 Score 69.18% 68.63% 68.05%

DNN Precision 72.61% 67.63% 67.77%
With 100 Recall 72.74% 67.67% 67.72%

Feature Set F1 Score 72.48% 67.40% 67.41%

Hybrid Augmented
Precision 67.81% 68.15% 80.56%

Recall 68.08% 68.14% 80.50%
F1 Score 68.04% 67.85% 80.24%

Regarding observed improvements, the increased dataset size was beneficial for the 384

baseline CNN with GRU and CRNN methodologies, which saw an increase from 60.07% to 385

61.99% and 60.35% to 63.33% F1 Score, respectively from Original- to New-4QAED C, both 386

better in relation with the DL Baseline as seen in Table 3. It was also apparent that increased 387

dataset size made the optimization phase more stable than previously observed. There was 388

a slight decrease when the balanced variations of the latter were applied, reinforcing the 389

importance of the dataset size. 390

As for the DNN-based methodologies, the 1714 feature set model performs better on 391

the New-4QAED variations, while the 100 feature set performs considerably better on the 392

Original-4QAED. This is to be expected since the top 100 features were found using the 393

latter and may not translate to a dataset with more samples. Thus, using the complete 394

feature set for our Hybrid Ensemble should perform better since the DNN is able to process 395

the relevant features for a given dataset. 396

Table 4. Precision, recall, and F1 score of methodologies with segment-level architectures across
datasets.

Methodology Metrics Original-4QAED New-4QAED C New-4QAED B

ShortChunk CNN [24]
Precision 64.66% 64.07% 60.23%

Recall 61.48% 62.13% 59.19%
F1 Score 60.61% 61.84% 57.07%

Sample CNN [9]
Precision 62.64% 65.17% 62.43%

Recall 61.26% 62.62% 56.70%
F1 Score 60.92% 60.78% 54.46%

To wrap up the improvements related to architectures, the overall best result was 397

obtained with the Hybrid Augmented methodology, which reached an F1 Score of 80.20% 398

on the balanced subset of New-4QAED. Here, both the size and quadrant distribution 399

heavily influenced the obtained score, the latter most likely related to the biased nature of 400

the DNN, similar to classical ML techniques. 401
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Table 5. Precision, recall, and F1 score of methodologies with embedded data representations across
datasets.

Methodology Metrics Original-4QAED New-4QAED C New-4QAED B

OpenL3 Embeddings [13]
Precision 55.67% 53.92% 53.03%

Recall 56.75% 54.49% 53.18%
F1 Score 55.70% 53.62% 52.85%

Autoencoder Embeddings
Precision 50.63% 53.78% 53.56%

Recall 50.40% 55.45% 54.76%
F1 Score 50.18% 53.56% 53.69%

Some improvements were also observed when applying Time-Frequency Masking, 402

Seven-Band Parametric Equalization, and Random Gain, which achieved the best results 403

with an increase of around 1.5% F1 Score, seen in Table 6, compared with the DL Baseline on 404

Original-4QAED and was consistently better on New-4QAED. As for the Tanh Distortion 405

and Background Noise transformations, their poor results may be caused by considerable 406

changes in the underlying emotion when compared to the original samples. These results 407

call for a need to conduct more studies on data augmentation applied to MER, as most of 408

the applied techniques in the literature are drawn from studies in other fields, as already 409

discussed in Section 1, with implications for the emotional content of the resulting samples 410

not being known. 411

Table 6. Precision, recall, and F1 score of methodologies trained with synthesized data across datasets.

Methodology Metrics Original-4QAED New-4QAED C New-4QAED B

Baseline CNN Precision 63.05% 62.51% 62.33%
With Synthesized Recall 62.75% 62.17% 61.85%

Samples (TFM) [25] F1 Score 62.03% 61.82% 61.39%

Baseline CNN Precision 63.38% 62.54% 62.13%
With Synthesized Recall 62.79% 62.16% 61.71%

Samples (SB) F1 Score 62.12% 61.73% 61.01%

Baseline CNN Precision 63.37% 63.02% 62.35%
With Synthesized Recall 63.13% 62.80% 62.10%

Samples (RG) F1 Score 62.24% 62.08% 61.36%

Baseline CNN Precision 61.83% N.A.* N.A.*
With Synthesized Recall 61.58% N.A.* N.A.*

Samples (TD) F1 Score 60.59% N.A.* N.A.*

Baseline CNN Precision 61.97% N.A.* N.A.*
With Synthesized Recall 61.79% N.A.* N.A.*

Samples (BG) F1 Score 60.84% N.A.* N.A.*

Baseline CNN Precision 61.91% 62.40% 61.62%
With Synthesized Recall 61.61% 62.02% 61.41%

Samples (DeepSMOTE) [29] F1 Score 60.70% 61.47% 60.48%

* Experiment was not conducted for this dataset.

In a more negative light, all segment-level methodologies performed poorly compared 412

to the DL Baseline, as presented in Table 4. Such poor performance may be attributed to 413

the reduced size of the datasets compared with the ones used in the original proposal of 414

the architectures, which are already in the order of hundreds of thousands of samples, 415

which means that the available training data thwarts our own, and also the difference of 416

the problem-solving approach, as already mentioned in the previous section. Moreover, 417

splitting samples into smaller segments may introduce more variability to the data and, 418

in turn, make it difficult for the architecture to learn relevant features for discerning each 419

quadrant, a hypothesis that should be further investigated. 420
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Table 7. Precision, recall, and F1 score of methodologies leveraging knowledge transfer across
datasets.

Methodology Metrics Original-4QAED New-4QAED C New-4QAED B

CNN Precision 51.95% 51.81% 51.56%
Pre-Trained On Artist Recall 53.93% 53.29% 52.43%

Classification Task F1 Score 50.85% 50.27% 50.22%

CRNN Precision 51.93% 52.97% 52.16%
Pre-Trained On Recall 51.71% 53.72% 52.50%

MagnaTagATune F1 Score 50.21% 51.70% 51.44%

CRNN Precision 49.98% N.A.* N.A.*
Pre-Trained On Recall 48.07% N.A.* N.A.*
MGT-Jamendo F1 Score 47.94% N.A.* N.A.*

CRNN Precision 47.50% N.A.* N.A.*
Pre-Trained On Recall 46.18% N.A.* N.A.*

MSD Subset F1 Score 45.84% N.A.* N.A.*

* Experiment was not conducted for this dataset.

Other methodologies, especially related to knowledge transfer and data representation, 421

performed worse than this baseline, as seen in Tables 7 and 5, respectively. In regard to 422

knowledge transfer, both approaches presented significant underperformance compared 423

with the same baseline, which implies that this information is not useful for emotion recog- 424

nition, particularly regarding the multi-label classification approach when using larger 425

datasets. The poor performance of these methodologies may be attributed to significant 426

differences from the learned features for the specific task, meaning that potentially relevant 427

information is lost due to a higher prevalence of features not relevant for emotion recogni- 428

tion. Other possible factors include the quality of the datasets considered for pre-training 429

the models, especially MSD, and the data distribution in terms of emotion, genre, and other 430

relevant factors for MER. Experimenting with an ensemble of models trained for emotion 431

recognition and another related task should be considered in the future. 432

As for embedding-based methodologies, we were not able to replicate the results 433

presented for the OpenL3 embeddings on Original-4QAED, reaching, at most, a 55.70% F1 434

Score against the reported value of 72%, which may be due to the unclear data splitting 435

(apparently, the authors followed 80/10/10 train-validation-test data splitting instead of 436

10-fold cross-validation). Moreover, the parameters disclosed in the original approach 437

lacked mention of the parameters for creating the RF classifier, so it was understood as 438

using the default parameters from the scikit-learn implementation. At the same time, 439

cross-validation was another point not made clear, for which we applied the usual method 440

for consistency matters. We also observed that the autoencoder embeddings performed 441

consistently better on New-4QAED when compared with OpenL3 embeddings, which may 442

indicate that these are not the best suited for MER. 443

The poor results of the autoencoder embeddings were also reflected in the 444

DeepSMOTE-based augmentation, with no significant improvement over the DL baseline. 445

The lack of improvement may be attributed to the high dimensional embedding space, 446

as sampling from this space provides little variability in comparison with the original 447

samples. Another possibility is the distortion of important regions in the Mel-spectrogram 448

representations, which make it difficult for the network to classify the synthesized sample. 449

Reducing the input data size, e.g., using the segments of the full samples, should decrease 450

the embedding space dimension and produce more relevant synthesized samples. 451

6. Conclusion and Future Directions 452

In this study, the performances of different classical ML and DL methodologies were 453

evaluated on differently sized datasets to assess the impact of data quantity for various 454

approaches, with a greater focus on the latter to deal with the existing semantic gap found 455
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in the former approaches. Various routes have been explored, including improvements 456

to previously developed architectures and exploring segment-level ones, applying data 457

augmentation to increase the available training data, performing knowledge transfer for 458

leveraging information from other datasets and/or domains, and using different data 459

representations as input. 460

From the evaluated methodologies, the proposed Hybrid Augmented, an ensemble 461

of both a CNN trained with synthesized samples in addition to the original ones, and 462

DNN using Mel-spectrogram representations and previously extracted features from each 463

song as input, achieved the best result overall of 80.20% F1 Score on the New-4QAED 464

balanced dataset. Another significant improvement was obtained by applying the CRNN 465

on the increased sized New-4QAED datasets, surpassing the DL Baseline by approximately 466

2% on the complete set, and the improvements observed when applying classical data 467

augmentation. 468

The comparison between the various methodologies has also highlighted the perfor- 469

mance improvement provided by classical audio augmentation techniques in addition to 470

the already discussed architectural improvements. The same can not be said regarding 471

segment-level architectures, knowledge transfer from related tasks, and embedding-based 472

input representations, although some of these may be improved, as already discussed 473

in the previous section. It was also evident from the obtained results that dataset size is 474

more impactful than class balance for classification performance in most cases, which we 475

can observe in the CRNN experiment for instance, where the New-4QAED complete set 476

outperforms the balanced set by around 1.5% F1 score. Moreover, this is more noticeable 477

in the Segment-level Architectures experiments, where the complete set outperforms the 478

balanced set by 4%. 479

The results indicate that research should be pursued to develop novel classical features 480

and improve DL architectures for further performance improvement. Moreover, data 481

augmentation research specifically for MER appears to be a promising route to fully exploit 482

DL models’ abilities to extract relevant features automatically. With increasing training 483

data, future DL architectures should incorporate an RNN portion to extract time-domain- 484

specific features. To conclude, various spectral representations as inputs are also an exciting 485

research route, as found from early experimental efforts, but it is necessary to address the 486

unstable nature of such approaches first. 487
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