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Abstract

The rise of digital music streaming platforms has led to a growing interest in Mu-
sic Emotion Recognition (MER). Within MER, Music Emotion Variation Detection
(MEVD) is a topic of increasing relevance, focusing on the analysis of emotion
variation throughout songs, rather than focusing only on the dominant emotion.
Traditional approaches in this field typically involve feature engineering to clas-
sify song emotions, but recent advancements in deep learning methodologies us-
ing neural networks have shown great promise in achieving the same objective.
However, challenges persist, such as the reliance on small or low-quality datasets
and unsuitable features for emotion classification, which can limit the accuracy
and effectiveness of these models.

This study extends the work of Panda and Paiva from 2011 on MER by exploring
the potential of the All-In-One tool for music segmentation. The primary objec-
tive is to assess whether this tool, which aims to eliminate issues associated with
small windows or segmentation methods prone to artifacts and boundary effects,
can enhance emotion recognition performance. Extensive experiments were con-
ducted using both Deep Learning (DL) and Machine Learning (ML) approaches
in combination with the All-in-One structural segmentation tool. The research
evaluates the impact of dynamic window sizes created by this tool compared to
traditional fixed-size windows of 1.5 seconds.

The experiments yielded promising results for the variable-size windows, with
the best F1-Score outcomes being 53.17% for the SVM approach and 36.94% for
the DL approach. Although these results do not surpass the current state-of-the-
art benchmarks, they highlight the potential of variable-sized windows through
structural segmentation in improving emotion classification in music.

This work contributes by demonstrating the potential benefits of using the All-
in-One tool for dynamic segmentation, which could lead to improvements in the
MEVD field. However, as one of the first structural segmentation tools applied
in this context, the All-in-One tool shows significant promise but requires further
refinement to fully exploit its capabilities. This study’s findings contribute to
developing more accurate and reliable methods for MER, potentially impacting
future research and applications in the field.

Keywords

Music Emotion Recognition, Music Emotion Variation Detection, Music Informa-
tion Retrieval, Audio Analysis, Music Segmentation.
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Resumo

O aumento das plataformas de streaming de misica digital levou a um interesse
crescente no Reconhecimento de Emoc¢do em Misica (REM). No ambito do REM,
Detecdo de Variagdo de Emocdo em Musica (DVEM) é um tépico de crescente
relevancia, centrando-se na andlise da variagdo da emocéo ao longo das cangdes,
em vez de se concentrar apenas na emoc¢do dominante. As abordagens tradi-
cionais neste dominio envolvem tipicamente a engenharia de carateristicas para
classificar as emog¢des das cangdes, mas os recentes avangos nas metodologias
de aprendizagem profunda utilizando redes neuronais tém-se revelado muito
promissores para alcangar o mesmo objetivo. No entanto, persistem desafios,
como a dependéncia de conjuntos de dados pequenos ou de baixa qualidade e
carateristicas inadequadas para a classificagdo de emogdes, o que pode limitar a
precisdo e a eficdcia desses modelos.

O presente estudo alarga o trabalho do Panda and Paiva de 2011 sobre o REM,
explorando o potencial da ferramenta All-in-One para a segmentagdo musical. O
objetivo principal é avaliar se esta ferramenta, que visa eliminar problemas asso-
ciados a pequenas janelas ou métodos de segmentacdo propensos a artefactos e
efeitos de limite, pode melhorar o desempenho do reconhecimento de emocgdes.
Foram realizadas experiéncias exaustivas utilizando abordagens de Aprendiza-
gem Profunda (AP) e de Aprendizagem Automaética (AA) em combinac¢do com
a ferramenta de segmentacédo estrutural All-in-One. A investigacdo avalia o im-
pacto dos tamanhos de janela dindmicos criados por esta ferramenta em com-
paracdo com as janelas tradicionais de tamanho fixo de 1,5 segundos.

As experiéncias produziram resultados promissores para as janelas de tamanho
varidvel, com os melhores resultados de F1-Score a serem 53.17% para a abor-
dagem SVM e 36.94% para a abordagem DL. Embora estes resultados ndo ultra-
passem os actuais benchmarks de dltima geragdo, destacam o potencial da seg-
mentagdo dindmica para melhorar a classificacdo de emogdes na musica.

Os contributos deste trabalho incluem a demonstracdo dos potenciais benefi-
cios da utilizagdo da ferramenta All-in-One para a segmentagdo dinamica, o que
podera conduzir a melhorias no dominio do MEVD. No entanto, sendo uma das
primeiras ferramentas de segmentacado estrutural aplicadas neste contexto, a fer-
ramenta All-in-One mostra-se bastante promissora, mas necessita de ser aper-
feicoada para que as suas capacidades sejam plenamente realizadas. As con-
clusdes do estudo contribuem para o desenvolvimento de métodos mais precisos
e fidveis para a MER, com potencial impacto na investigacdo e nas aplica¢des
futuras neste dominio.

Palavras-Chave

Reconhecimento de Emog¢des na Musica, Detec¢do de Variacdo de Emocgdo na
Misica, Recuperacdo de Informacdo Musical, Andlise de Audio, Segmentagdo
Musical.
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Chapter 1

Introduction

Music Emotion Retrieval (MER) is a field of Music Information Retrieval (MIR)
that focuses on identifying and categorizing the emotional content of a musical
piece. The static MER approach views the entire musical composition as a single
entity and assigns it one or more emotional labels based on its overall dominant
emotional characteristics.

Music Emotion Variation Detection (MEVD) is a topic of MER that identifies emo-
tional changes in a music piece over time. It assigns emotional labels to capture
the variations as they unfold, providing a more nuanced understanding of a mu-
sic piece’s emotional landscape.

The study of MER is an intriguing pursuit that delves into the complex relation-
ship between sound and emotion. As an interdisciplinary field merging musi-
cology, computer science, and psychology, MER aims to decode the emotional
nuances hidden within musical compositions. By utilizing advanced technolo-
gies such as Machine Learning (ML) and signal processing, researchers strive to
develop systems that can comprehend, classify, and retrieve the emotional sub-
tleties embedded within melodies, providing a nuanced understanding of the
profound connection between music and human emotion.

This exploration into the intersection of art and science holds enormous potential
for music enthusiasts and applications in various fields, including personalized
music recommendations, affective computing, and the creation of emotionally
resonant audiovisual experiences.

Let us embark on a melodic journey through the landscape of MER and uncover
the intricate tapestry of emotions woven into the fabric of our favorite tunes,
transcending the auditory experience into a realm of profound emotional under-
standing.

1.1 Problem and Motivation

Exploring the complexities of MER unveils a rich landscape of challenges, yet
within each challenge lies an opportunity for progress and innovation.

1
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One of the significant challenges in MER is the subjective nature of emotion clas-
sification, which can introduce ambiguity and make it challenging to categorize
songs effectively. The variability between songs and sudden emotional shifts
within the same track further complicate accurate classification. The study fo-
cuses on perceived emotion to mitigate this subjectivity, reducing personal biases
in the classification process. Emotion annotations are determined by an absolute
majority consensus among multiple annotators, ensuring that the classification
reflects a collective agreement and enhancing the reliability of the results.

The MER'’s lack of emotionally relevant features further complicates accurately
identifying emotions within musical pieces. Moreover, the scarcity of compre-
hensive datasets with high-quality annotations is another hurdle, mainly when
aiming for larger datasets essential for testing Deep Learning (DL) approaches.

Creating suitable datasets is an uphill task that involves meticulous annotation
efforts and ensuring the inclusion of diverse emotional contexts across various
music genres. Limited dataset sizes pose a hindrance, as numerous studies rely
on smaller datasets, impeding the implementation of DL methods that thrive on
ample data.

The choice of appropriate window size for audio segment classification signifi-
cantly influences the accuracy of emotion representation. A tiny window might
overlook subtle emotional nuances in the music, leaving an inadequate reflec-
tion of the overall emotional context. Conversely, a vast window can encompass
multiple emotional states within a single segment, amalgamating and misinter-
preting distinct emotional characteristics.

Segmentation tools come into play to address this challenge and enhance seg-
mentation. These tools detect boundary changes within the music, identifying
shifts or transitions between different sections. By incorporating these tools, the
segmentation process becomes more sophisticated, allowing for a nuanced repre-
sentation of emotions. Applying tools like All-in-One [Kim and Nam, 2023] and
DeepChorus [He et al., 2022] is particularly beneficial for researchers, who may
encounter challenges in defining an optimal window size. The ability of these
tools to identify boundary changes helps with the segmentation align with the
natural divisions and transitions in the music, resulting in a more accurate cap-
ture of emotional flow and contributing significantly to achieving a more granu-
lar and precise classification of emotions within individual audio segments, im-
proving the outcomes of MEVD studies where defining an appropriate window
size is complex.

1.2 Objectives and Approaches

The main goal of this project is to advance MER and MEVD by studying classical
and DL methods. The objective is to improve the accuracy and consistency of
emotional analysis in music by combining these approaches with segmentation
tools.
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Two classic approaches have been identified when studying emotional informa-
tion in music. The first approach involves using static windows to analyze fixed
segments of audio, for example, 1 second long, to extract emotional information.
The second approach involves dividing the composition into distinct parts and
analyzing each segment’s specific characteristics using tools such as All-in-One
[Kim and Nam, 2023] and DeepChorus [He et al., 2022]. This dynamic approach
provides a more precise and contextualized analysis of the music’s emotional
characteristics in different parts of the composition, allowing for a deeper under-
standing of emotional nuances over time.

Building on these established methods, this work aims to contribute to the MEVD
tield by:

¢ this work builds upon and extends the previous research conducted Panda
and Paiva on static MER, a former MSc thesis student of the Music Emotion
Recognition - Next Generation (MERGE) team;

e improve the emotion recognition process, by incorporating segmentation
tools.

Table 1.1 summarizes the objectives ranked on a high, medium, and low priority
scale, representing their importance in this work. All possible efforts are made to
accomplish them.

Objective Priority
Replication of previous work High
Implementation and comparison of static and dy-| High
namic window sizes in classical approaches

Implementation and comparison of static and dy-| High

namic window sizes in DL approaches
Implementation and comparison of static and dy- | Medium
namic window sizes in Hybrid network approaches
MEVD - Review and experimentation with Cal500Exp | Low

Table 1.1: Objectives of this work.

To fully elucidate the scope of this undertaking, accomplishing the project’s aims
should address the subsequent research questions:

¢ Are the results presented in previously conducted work replicable?

* How do classical and DL approaches affect the MEVD performance?

* How do fixed and variable window sizes affect the performance in classical
approaches?

¢ How do fixed and variable window sizes affect the performance in DL ap-
proaches?
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1.3 Results, Contributions and Limitations

This section presents the key outcomes of the research, highlighting the signifi-
cant contributions made and addressing the limitations encountered during the
course of this work.

The research yielded several noteworthy results:
* Achieving 53.17% F1-score in MEVD dataset using an Support Vector Ma-
chine (SVM) with the segments produced by the All-in-One tool;
¢ Achieving 43.10% F1-score in MEVD dataset using an Convolutional Neu-
ral Network (CNN) with the segments produced by the All-in-One tool.

As for the main contributions made with this work:

¢ Exploring a structural segmentation tool: All-in-One;
¢ Extensive experiments in Classic ML and DL approaches were conducted
using the All-in-One tool.

As for limitations found during this work:

* One major challenge is that although the All-in-One tool holds significant
promise, it still requires further refinement to realize its full potential. It
achieved a weighted average F-measure of 70.10% for segmentation accu-
racy on the MEVD dataset, demonstrating that structural segmentation can
be imprecise.

The main difficulties found during this work:

¢ The volatile nature of the server where the experiments were conducted;
* Problems with replication of virtual environments with outdated libraries;

¢ The limited size of the database, which did not allow for fully leveraging
deep learning approaches.

1.4 Organization, Planning and Resources

This section outlines the experimental setting of this research, including a sum-
mary of the tasks planned, the time allotted for each, and a review of the project’s
actual progression.
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1.4.1 Experimental Environment

The experiments described were primarily carried out on a server shared with
the team. Given the complex requirements of the deep learning models tested,
Graphics Processing Unit (GPU) were necessary for their effective development
and evaluation within a feasible timeframe. The specifications of the server are:

¢ Intel Xeon Silver 4214 CPU @ 2.20 GHz x 48
e 7x NVIDIA RTX A5000 24GB

¢ 3x NVIDIA RTX A6000 48GB

e 700GB RAM

Additionally, as the server is shared among multiple students, not all resources
are accessible at all times, leading to varying levels of server activity that can
affect the speed of task completion.

The methodologies primarily utilized a Python 3.8.19 virtual environment to en-
sure replicability. Data manipulation was performed using libraries, including
Numpy and Pandas. Keras, Tensorflow, and PyTorch were employed to build
and train DL models. Scikit-learn’s implementations of ML algorithms were
used, in addition to calculating necessary metrics to evaluate the methodologies’
performance.

1.4.2 Organization

The appendix presents Gantt charts to contrast the planned timeline with the
actual effort needed to complete each task. The charts are accompanied by a
discussion of the reasons for any changes.

First Semester

The decision was made to dedicate the initial two months of the semester primar-
ily to conducting a literature review to develop a thorough state-of-the-art. Ad-
ditionally, this period will be used to gather the essential information required to
achieve the project’s goals. The rest of the first semester would be focused on get-
ting to know the available MER datasets, replicating the classic approach work
done by Panda and Paiva, and experimenting with and becoming familiar with
segmentation tools like All-in-One.

During the literature review period, there was an opportunity to familiarize my-
self with the server that would host the experiments and to prepare the necessary
setup for conducting them.

The focus of the whole semester was to develop a good foundation on the various
approaches available to solve MER. Replication of previous work was started,

5
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ensuring a foundation of the main tools for conducting all future experiments in
the next semester.

Second Semester

For this semester, most of the tasks were already established with respective es-
timations of the time they would take to complete. These estimations, as can be
seen by the final Gantt chart, were severely underestimated due to various fac-
tors.

The project started with the continuation of the traditional window-based MEVD
approach, which was initially expected to take four weeks. However, due to my
initial lack of expertise, it took an additional two weeks to complete. A similar
delay happened with the window-based MEVD DL approach, as I needed extra
time to become proficient with DL algorithms, extending the timeline by two
more weeks.

After starting the structural-based MEVD classical approach, everything was go-
ing according to plan until an unplanned server update caused the WELMO
server to shut down, corrupting all data as a result. All the previous experimen-
tal data was lost, and we now need to redo the experiments to recover the lost
results. This setback has caused a six week delay in the structural-based MEVD
approach. To prevent future data loss, we have implemented regular backups.

The structural-based MEVD DL approach was making progress when another
server update corrupted the virtual environment I was working in. Much time
was spent trying to restore it, which unfortunately led to significant delays and
limited the time for new experiments.

Due to the remaining time and the considerable delays caused by the virtual en-
vironment issues, the hybrid approach was initiated much later than expected,
and experiments with the Cal500Exp dataset could not be conducted.

1.5 OQOutline

This document structure follows:

Chapter 2 overviews fundamental concepts for understanding MER and MEVD.
It begins with discussing what emotions are, the different types of emotions, and
various emotion models (Section 2.1). The chapter then introduces machine learn-
ing, including its types and the specific algorithms used in this work (Section
2.2). It continues with an overview of the feature engineering process, highlight-
ing key audio features and frameworks (Section 2.3). The chapter then discusses
deep learning, focusing on relevant models applied in this research (Section 2.4).
It then explains the concept of data augmentation, its purpose, and methods (Sec-
tion 2.5). The chapter concludes with a discussion of the evaluation metrics used
to assess model performance (Section 2.6) and a summary of the entire Section 2
(Section 2.7).



Introduction

Chapter 3 provides an overview of the current state of research in MER and
MEVD. It begins with a discussion of the various datasets used in the field, high-
lighting their importance and associated challenges (Section 3.1). The chapter
then reviews the classical and deep learning approaches used for MER, outlin-
ing key methods and advancements (Section 3.2). Also, it discusses the work
done in MEVD, exploring both classical and deep learning approaches and their
applications (Section 3.3). Finally the chapter concludes with a discussion on seg-
mentation tools (Section 3.4) and a summary of the entire Section 3 (Section 3.5).

Chapter 4 describes the methods and experiments conducted in this research.
It begins by replicating previous work to establish a baseline (Section 4.1) and
proceeds with experiments using segmentation tools to test their effectiveness in
emotion detection (Section 4.2). The chapter outlines classical machine learning
approaches (Section 4.3) and deep learning approaches (Section 4.4), before in-
troducing a hybrid approach (Section 4.5). It ends with a summary of the entire
Section 4 (Section 4.6).

Finally, chapter 5 summarizes the main conclusions drawn from this research
and discusses potential directions for future work. It includes recommendations
for improving MER and MEVD methodologies and identifies areas for further
investigation to advance the field.






Chapter 2

Background Concepts

This chapter will delve into the fundamental concepts that form the backbone of
our study of MER and MEVD. By exploring these key concepts, we can build a
strong understanding of the principles and ideas that underlie our field of study.

2.1 Emotion

Emotions are a fascinating and complex topic in psychology. The term "emotion"
has been used in various ways throughout history, leading to a lack of agreement
on its definition and characteristics [Dixon, 2012].

In the upcoming sections, this work will explore emotions in-depth and provide
a detailed overview of the various types of emotions and classification models
used to identify them. The goal is to provide a comprehensive understanding of
this intricate subject matter.

2.1.1 Definition of Emotion

The American Psychological Association proposes an adapted definition from
Merriam-Webster for emotion, visually illustrated in Figure 2.1.

"Emotions are conscious mental reactions (such as anger or fear) subjectively ex-
perienced as strong feelings usually directed toward a specific object and typi-
cally accompanied by physiological and behavioural changes in the body." [Merriam-
Webster, 2023].

2.1.2 Types of Emotion
"The distinction between emotion perception and emotion induction is important
since it is possible to perceive emotional expression in music without necessarily

being affected oneself." [Gabrielsson, 2001].
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Categories for Theories of Emotion

Physiological: Neurological: Cognitive:

very

Figure 2.1: Theories of Emotion.
https://www.verywellmind.com/theories-of-emotion-2795717

Therefore, in MER, emotions are expressed, perceived, and felt. Expressed emo-
tions refer to the emotions the author is trying to convey in his work. Perceived
emotions in music refer to the emotion that a listener "observes" in a musical
piece, which may or may not be different from the emotions that a musician in-
tends to convey in a song from the emotions the listener feels. Finally, felt emo-
tions in music refer to the emotional experience that the listener personally and
subjectively feels while listening to a particular piece of music.

While expressed emotions in music are often accurately perceived by listeners,
induced emotions can vary greatly depending on an individual’s unique charac-
teristics and personality. As a result, these emotions may differ between listeners
and even within the same individual under different circumstances. In this re-
spect, "the paradox of negative emotion refers to the phenomenon where music
described in negative emotional terms, such as sadness or grief, is often judged
as enjoyable." [Pannese et al., 2016].

As induced emotions are more subjective than perceived emotions, studies deal-
ing with different kinds of emotions may create poor datasets. To address this
issue, researchers primarily focus on perceived emotions, which have higher lev-
els of agreement among listeners. However, subjectivity still exists, and measures
must be taken to minimize it during the dataset creation process.

2.1.3 Emotion Models

Due to the ambiguous nature of emotions, a generic reference is necessary when
categorizing music pieces. Music psychology has researched this topic, mainly
focusing on the most suitable emotion taxonomy for modeling the emotional
spectrum. There are two types of emotion models: categorical and dimensional.
Categorical models classify emotions into specific categories: happiness, sad-
ness, anger, and fear. On the other hand, dimensional models represent emotions
through continuous dimensions such as valence and arousal, as discussed below.

10


https://www.verywellmind.com/theories-of-emotion-2795717

Background Concepts

Categorical/Discrete models

These models rely on [Ekman, 1992] concept of basic emotions, which posits that
emotions are discrete and can be categorized. However, some researchers have
challenged this theory by proposing alternative sets of emotions.

Hevner'’s Adjective Circle

Hevner’s emotion model, initially developed by [Hevner, 1936], consists of 67
adjectives grouped into eight clusters that describe related emotional states. In
the original model, each cluster contained a fixed number of adjectives. How-
ever, in later revisions made by other researchers, such as [Farnsworth, 1954] and
[Schubert, 2003], the number of adjectives in each cluster was adjusted to include
six to eleven adjectives per cluster. These revisions aimed to update the model
by adding new terms and reorganizing the clusters to make it applicable to a
broader range of music genres beyond classical music, addressing the limitations
of Hevner’s original genre-specific selection of adjectives.

6

7 merry 5
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depressing
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dark

Figure 2.2: Hevner’s Adjective Circle.
[Hevner, 1936]

GEMS

The Geneva Emotional Musical Scale (GEMS) study [Zentner et al., 2008] in-
volved a series of experiments in which participants rated their emotional re-
sponses to different musical excerpts using a list of emotion terms. The researchers
used this analysis to develop a categorical model of nine emotion categories con-
sistently evoked by the music samples. These categories were Wonder, Transcen-
dence, Nostalgia, Tenderness, Peacefulness, Power, Joy, Sadness, and Tension.
The study’s findings have significant implications for music emotion classifica-
tion and understanding the emotional impact of music on listeners. Some have
questioned the study’s representativeness, as it selected only five genres to cap-
ture the entire spectrum of music, which may not fully reflect the diversity of
musical expression.
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Dimensional models

The emotions are represented in a multi-dimensional space, often with two di-
mensions, allowing for similarity judgments based on the distance between au-
dio clips. The Russell Circumplex Model of Emotion [Russell, 1980] is widely
recognized and influential in music emotion recognition.

Russell’s Circumplex Model

The Circumplex Model of Affect [Russell, 1980] is a model that categorizes emo-
tions based on their valence and arousal levels. Valence pertains to the polarity
of emotion in terms of positive and negative states (also known as pleasantness),
while arousal (also known as activity, energy, or stimulation level) refers to the
activation or deactivation associated with an emotion. Russell even claimed that
valence and arousal are the “core processes” of affect, constituting the raw mate-
rial or primitive of emotional experience [Russell, 1980]."

The model proposes that emotions are within a circular structure, with adjacent
emotions sharing similar valence and arousal levels, divided into four quadrants,
each representing a different combination of valence and arousal levels: High
Arousal, Positive Valence - excitement, enthusiasm, and ecstasy; High Arousal,
Negative Valence - anger, fear, and anxiety; Low Arousal, Negative Valence -
sadness, boredom, and depression; Low Arousal, Positive Valence - relaxation,
contentment, and serenity.

High Arousal
(active emotion)

Tense

Nervous

Angry

Low Valence

Excited

Happy

Delighted

High Valence

(negative emotion)
Sad

Bored

Depressed

(positive emotion)
Content

Relaxed

Sleepy

Low Arousal
(inactive emotion)

Figure 2.3: Russell’s Circumplex Model.

Figure 2.3 shows that the intersection of arousal and valence dimensions forms
a circular model with four quadrants, each representing a unique combination
of valence and activation. Quadrant 1 represents positive, high-energy emotions
like happiness. Quadrant 2 represents negative, high-energy emotions like anger.
Quadrant 3 represents negative, low-energy emotions like sadness. Quadrant 4
represents positive, low-energy emotions like relaxation. This model suggests
that emotions are interrelated and provides a framework for understanding and
studying human emotions.
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2.2 Machine Learning

ML is a subfield of Artificial Intelligence that aims to make computer systems
learn and adapt from experience, like humans, creating algorithms that recognise
data patterns and enabling systems to make informed decisions or predictions
without explicit programming [Mitchell, 1997].

The ML process begins with data ingestion and preparation. This involves col-
lecting data relevant to the problem, cleaning it to remove any errors or inconsis-
tencies, and transforming it into a format suitable for the learning algorithm.

A suitable model, a mathematical representation of a real-world process, is se-
lected once the data is pre-processed. The learning algorithm can adjust the
model’s parameters to improve performance, optimising these parameters based
on a cost or loss function. This function quantifies the difference between the
model’s predictions and the actual data, providing a metric the algorithm seeks
to minimise.

After the model training and satisfactory performance, the final step is deploy-
ing the model. This involves integrating the model into the existing production
environment, where it can provide predictions on new data.

All of these steps are illustrated in Figure 2.4.

Hyperparamter
tuner

Model Training
training ° —»{ Evaluation
Training O Results
. Data

l >
Test

Test Evaluation

Data Model Results

Figure 2.4: ML pipeline (adaptation).
[Omer et al., 2023]

Previous studies have explored the use of SVM ML models in music emotion
recognition. One such example is the work of Panda and Paiva (2011), who de-
veloped a method for automatic emotion tracking in audio music through super-
vised learning and classification. Their approach predicted the quadrants of Rus-
sell’s taxonomy and arousal and valence values of short segments in full songs,
thus providing insights into the changes in emotion over time.
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2.2.1 Machine Learning Paradigms

In ML, three primary categories exist: Supervised Learning, Unsupervised Learn-
ing, and Reinforcement Learning.

Supervised Learning is a type of ML where the model is trained on a dataset
that includes input variables and the corresponding correct outputs. It’s analo-
gous to a teacher-student scenario, where the model learns from labeled examples
provided in the training data. The learning algorithm iteratively makes predic-
tions and is corrected based on the actual outputs, leading to adjustments in the
model’s parameters. The goal is to optimize these parameters to minimize the
discrepancy between the predicted and actual outputs, typically measured by a
loss function. Supervised Learning can be further divided into two categories:
regression, where the output is continuous, and classification, where the output
is categorical [Bishop, 2006].

Unsupervised Learning, by contrast, involves training a model on a dataset with-
out labels. The primary objective is to discover underlying structures or patterns
within the data. This is achieved through methods such as clustering, where the
algorithm groups similar data points, or dimensionality reduction, where the al-
gorithm identifies the most essential features of the data. Unsupervised Learning
is uncovering hidden labels or structures within the data [Bishop, 2006].

Reinforcement Learning is a different type of ML where an agent learns to make
decisions by interacting with its environment. The agent takes actions based on
its current state and receives rewards or penalties as feedback. The agent’s objec-
tive is to learn a policy, a set of rules that guide its actions to maximize the cumu-
lative reward over time. This learning process involves balancing exploration,
where the agent tries different actions to gather information, and exploitation,
where the agent uses the acquired data to make the best decisions [Sutton and
Barto, 2018].

2.2.2 Machine Learning Algorithms

As this research focuses on a classification task to categorize different segments
into four Russell’s quadrants, this study will concentrate on supervised algo-
rithms, namely SVMs.

Given its prevalence in most MER and MEVD studies [Panda and Paiva, 2011;
Panda et al., 2020b], the experiments conducted in this work used SVMs, a ro-
bust set of supervised ML algorithms that can be used for various tasks such as
classification, regression, and outlier detection.

As represented in Figure 2.5, the SVM model aims to find the most effective
boundary between data classes. Its approach is to identify a hyperplane that
offers the maximum possible separation between the two data classes. SVMs
transform data into a high-dimensional feature space, establishing a linear deci-
sion boundary. Subsequently, SVMs identify the hyperplane that offers the most
significant margin between the two data classes. The margin represents the dis-
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tance between the hyperplane and the nearest data points from each class. Figure
2.5 represents this model.

<

Figure 2.5: SVM Model Struture

https://medium.com/it-paragon/support-vector-machine-regression-
cf65348b6345

SVMs aim to find an optimal hyperplane that maximally separates different classes
in the feature space. The SVM algorithm finds the hyperplane by solving a quadratic
optimization problem that seeks to minimize the norm of the weight vector sub-
ject to some constraints. These constraints ensure that each data point is on the
correct side of the hyperplane.

2.3 Feature Engineering

Feature engineering is a crucial task within MER. It involves transforming raw
data into meaningful features that improve the performance of predictive mod-
els. This process is essential for boosting the accuracy of ML models by effectively
representing the underlying data. In MER, there is a significant focus on creat-
ing emotionally relevant features from audio and tasks such as feature scaling,
integration, ranking, selection, and projection. This chapter will mainly concen-
trate on feature engineering for audio, as only audio features were used in this
research.

2.3.1 Feature Engineering Overview

Feature engineering involves several steps to improve data representation for ML
models. Key processes include:
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Feature Extraction

ML algorithms rely on numerical data. However, inputs like audio files need to
be converted into numerical values through feature extraction. Specifically for
audio, it’s essential to understand that sound is a series of waves representing air
pressure changes over time. These waves have various properties, such as am-
plitude, frequency, and waveform complexity. Tools like the Fast Fourier Trans-
form (FFT) can analyze these waves and develop numerical features like beats
per minute or dominant frequency to convert the analog sound into digital form.
These features are crucial for ML models to identify patterns and make accurate
predictions.

Feature Scaling

Adjusting the range of feature values is typically done through normalization or
standardization. Normalization transforms features to a common scale without
distorting differences in the ranges of values. Standardization rescales data to
have a mean of zero and a standard deviation of one.

Integration

Integration combines multiple features into common statistics. This is often done
using metrics such as mean and standard deviation. Integration helps in sum-
marizing the data more compactly, making it easier to analyze and use in ML
models.

Ranking and Selection

Ranking and selection involve evaluating the importance of features and elimi-
nating irrelevant or redundant ones. Techniques such as correlation analysis, mu-
tual information, and feature importance scores from models like random forests
or gradient boosting are commonly used.

Projection

Projection transforms feature spaces using techniques like Principal Component
Analysis (PCA) to reduce dimensionality. PCA and similar methods help in iden-
tifying the most significant components of the data, thus simplifying the model
and reducing overfitting.

2.3.2 Audio Features

Audio features are essential for understanding and analyzing the emotional con-
tent of music. These features capture various sound aspects that can be quantified
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to predict a piece’s emotional impact. Musical attributes can be grouped into four
to eight different categories depending on the author (e.g., [Owen, 2000], [Meyer,
1973]), each representing a core concept. Here, we follow an eight-category or-
ganization, which includes melody, harmony, rhythm, dynamics, tone colour, ex-
pressive techniques, musical texture, and musical form.

* Melody: Melody is the sequence of pitches that form the main tune or
theme of a piece, often the most memorable part of the music. It is char-
acterized by the pitch, direction, and contour of the notes.

* Harmony: Harmony refers to the combination of different notes played si-
multaneously to create chords. It adds depth and supports the melody, cre-
ating feelings of tension or resolution.

* Rhythm: Rhythm refers to the pattern of sounds and silences in music,
defining the timing and duration of notes. It sets the pace and flow, in-
fluencing how lively or calm a piece feels.

* Dynamics: Dynamics involve the variation in loudness within a piece of
music, adding emotional intensity and contributing to the dramatic effect
by ranging from very soft to very loud.

¢ Tone Colour (Timbre): Tone colour, or timbre, describes the unique quality
of a sound that distinguishes different instruments or voices. It is what
makes a piano sound different from a violin, even when they play the same
note.

* Expressive Techniques: These are methods used by performers to shape
the music, affecting the transition and continuity between notes. Tech-
niques such as staccato (short and detached) and legato (smooth and con-
nected) impact the expressiveness and phrasing of the music.

* Musical Texture: Musical texture pertains to how different musical lines
or layers are combined within a piece. It can range from simple (a single
melody) to complex (multiple overlapping melodies), affecting the richness
and complexity of the music.

* Musical Form: Musical form is the overall structure or organization of a
piece of music. It determines how the music is arranged into sections and
provides coherence and shape to the composition.

Standard Features

Standard features are foundational audio features commonly used in MER to cap-
ture basic characteristics of the audio signal. Examples of standard features across
different musical dimensions include:
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¢ Melody:
— Pitch Estimation: Tracks the sequence of pitch values, capturing the
melodic contour of the music.
— Predominant Pitch: Extracts the Fundamental Frequency (F0) of the main
melody line, the key emotional element.
¢ Harmony:
— Chromagram: Maps energy distribution across the twelve pitch classes,
analyzing harmonic content and key.
— Modality Estimation: Determines whether the music is in a major (happy)
or minor (sad) mode.
¢ Rhythm:
— Tempo Change: Measures variations in the speed of a piece over time,
influencing the music’s emotional energy.
— Beats Loudness: Estimates loudness at specific beats to understand rhyth-
mic emphasis and intensity.
¢ Dynamics:
— Low Energy Rates: Indicates the percentage of frames with less energy
than the average, identifying softer, less intense sections.
— Loudness: Represents the perceived intensity of sound, conveying the
power and emotional weight of the music.
* Tone Colour (Timbre):
— Zero Crossing Rate (ZCR): Measures the rate of sign changes in the wave-
form, indicating noisiness or texture.
— Mel-frequency cepstrum coefficients (MFCC): Analyzes spectral shape to
capture the timbral qualities of sound.

* Expressive Techniques:

— Average Silence Ratio: Measures the proportion of silence between notes,
which can be used as an assessment of articulation, indicating how de-
tached or connected the notes are.

¢ Musical Form:

— Similarity Matrix: Assesses structural similarity between frames, iden-
tifying repeating sections and variations.

— Novelty Curve: Highlights significant structural changes, marking tran-
sitions and new themes.
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Novel Features

Novel features, as introduced by Panda et al., were developed to address the
limitations of standard audio features, which are often low-level and derived
directly from the audio waveform or spectrum. In contrast, humans naturally
rely on higher-level musical concepts such as melodic lines, notes, intervals, and
scores to perceive emotions in music. These novel features capture information
about higher-level musical concepts such as melody, articulation and texture by
explicitly determining musical notes, frequency, and intensity contours. This ap-
proach provides a more comprehensive understanding of the emotional content
of music, bridging the gap between low-level audio descriptors and the listener’s
emotional perception.

¢ Melody:
— Register Distribution: Analyzes how melody notes are spread across
pitch ranges (e.g., soprano, bass), impacting emotional tone.

— Note Smoothness Statistics: Indicates how close consecutive notes are in
pitch, reflecting melody smoothness and emotional flow

¢ Rhythm:

— Note Duration Statistics/Distribution/Transition Ratios: These features mea-
sure note duration ratios (short, equal, long) across the whole piece and
per second, providing insights into rhythmic complexity.

¢ Dynamics:

— Ratios of Note Intensity Transitions: Measures transitions between note
intensities: higher, lower, or equal, to capture dynamic changes.

— Crescendo and Decrescendo Metrics: Based on the intensity difference be-
tween note halves, these metrics count crescendo/decrescendo notes
and sequences, detailing intensity changes over time.

¢ Expressive Techniques:

— Articulation Features: Indicates how close consecutive notes are in pitch,
reflecting melody smoothness and emotional flow.

¢ Musical Texture:

— Music Layers Statistics: Estimates the number of simultaneous musical
layers (FOs) in each frame, providing textural complexity.

— Ratio of Musical Layers Transitions: Tracks transitions between different
musical textures, showing how the texture evolves.
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2.3.3 Audio Frameworks

Many of the standard audio features discussed in the previous section are im-
plemented in various audio analysis frameworks developed over the years. This
section provides a brief description of two notable frameworks, Marsyas and the
MIR Toolbox, highlighting their strengths and weaknesses in extracting these fea-
tures for analyzing the emotional content of music.

Music Analysis Retrieval and Synthesis for Audio Signals (Marsyas) is an open-
source framework [Tzanetakis and Cook, 2000]. It offers integration with graph-
ical interfaces, acoustical and statistical feature extraction, and classifier train-
ing, making it a versatile tool for music analysis. However, according to a study
[Panda and Paiva, 2011], notable disadvantages such as a lack of comprehensive
documentation, a complex API, and syntax difficulties can make it challenging
for users to utilize the framework effectively.

The MIR Toolbox is a MATLAB-based framework [Lartillot et al., 2008] that of-
fers a wide range of algorithms for music feature extraction. It is highly flexible,
allowing users to combine various feature extraction modules to create custom
analyses. The toolbox supports low-level and high-level audio feature extraction
and is well-documented, with visualization tools and the ability to perform bulk
extractions from multiple audio files. However, its reliance on MATLAB and the
Signal Processing Toolbox makes it resource-intensive, which can limit its practi-
cality for real-time feature extraction applications.

As the limitations of traditional frameworks become more apparent, mainly when
dealing with large, complex datasets, there is an increasing need for more auto-
mated and scalable solutions. This is where DL techniques come into play. By
leveraging the power of the Neural Network (NN), DL models can automati-
cally learn and extract meaningful features from raw audio data, reducing the
reliance on manual feature engineering and enabling more robust analysis of mu-
sic’s emotional content. The following section explores how DL is transforming
the field of music emotion recognition.

2.4 Deep Learning

DL, a field of ML, uses deep NNs to learn from large, high-dimensional data.
These networks, structured in layers, transform input data into meaningful out-
put, enabling the model to learn complex data representations. Unlike traditional
ML, DL can automatically discover the most relevant features from the data, re-
moving the need for researchers to extract features manually.

However, the effectiveness of DL models is constrained by the necessity of large,
high-quality datasets and substantial computational resources for training. This
is a significant limitation, especially in MER fields. In MER, large annotated
datasets are rare due to the subjective nature of emotional labels and the difficulty
in gathering extensive labeled data. Additionally, resource constraints, including
the need for powerful hardware and long training times, further exacerbate the
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challenges.

In the upcoming sections, we will delve deeper into the intricacies of DL, explor-
ing different DL models.

2.4.1 Artificial Neural Networks

NNs are computational models inspired by the structure and functioning of the
human brain, designed to learn and make predictions from data. They consist of
interconnected nodes, called neurons, organized into layers.

O
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Figure 2.6: Example of a simple, fully-connected NN architecture.
https://www.mathworks.com/discovery/convolutional-neural-
network.html

As seen in Figure 2.6, the NN architecture consists of an input, hidden, and output
layer.

The input layer is the first layer of a NN. Each neuron in this layer represents a
feature of the input data.

The hidden layers, positioned between the input and output layers, play a cru-
cial role in learning and extracting features from the input data through complex
combinations of weighted connections. In a dense network, each neuron in the
hidden layers receives inputs from all neurons in the preceding layer, applying a
set of weights and biases to them. In contrast, a sparse network has more limited
connections, where each neuron only receives inputs from a subset of neurons in
the previous layer. After this process, the results are passed through a non-linear
activation function, enabling the network to capture more complex patterns in
the data.

Weights and biases are learned parameters that determine the strength of connec-
tions between neurons in a NN. Activation functions, such as sigmoid, Rectified
Linear Unit (ReLU), and softmax, introduce non-linearity to the output of neu-
rons, allowing the network to model complex relationships between inputs and
outputs. ReLU sets negative values to zero, addressing the vanishing gradient
problem, accelerating training, and reducing computational complexity. Sigmoid
outputs probabilities between 0 and 1, making it useful for binary classification
tasks. Softmax normalizes a vector into a probability distribution, which is ideal
for multi-class classification tasks.
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The output layer is the final layer of the NN that generates predictions. The num-
ber of neurons depends on the problem. In binary classification, there may be
one neuron for each class, while in multiclass classification, there may be multi-
ple neurons. One-hot-encoding is applied to labels in order to compare the output
of the network.

Training a NN involves several key methods. During feedforward, input data
traverses through the network layer by layer. Neurons compute weighted sums
of inputs and apply activation functions to generate predictions.

BackPropagation (BP) fine-tunes NN weights by comparing predicted and actual
outputs, guiding the Gradient Descent optimization algorithm during training,
and adjusting weights iteratively to minimize loss function and improve accu-
racy. It ensures the NN learns from errors and moves towards optimal weights
for accurate predictions. In addition to Gradient Descent, other optimization al-
gorithms like Adaptive Moment Estimation (Adam) and Stochastic Gradient De-
scent (SGD) also play a critical role in training NNs.

The loss function evaluates model performance on the training data by measur-
ing the discrepancy between predicted outputs and actual targets. Common loss
functions include Mean Squared Error (MSE) and Cross-Entropy Loss.

2.4.2 Convolutional Neural Networks

CNNs are composed of multiple layers that can detect distinct features within
data. These networks employ filters that apply to data at various resolutions, and
each filtered data output serves as the next layer’s input. The filters initially learn
to identify essential features and then gradually progress towards more complex
features that can precisely define the data [Goodfellow et al., 2016].

The input goes to a convolutional layer, where filters are applied to the data to
extract features. These filters start by detecting simple features like edges and
colours, and as the data passes through the network, they can see more complex
teatures like shapes or patterns.

Once the convolution process is complete, an activation function is applied to
each element of the feature map.

Then, the pooling layer downsamples the data, reducing its dimensionality and
allowing it to draw assumptions about features contained in the sub-regions binned.
This layer reduces the computational cost by significantly reducing the number
of parameters.

After several convolutional and pooling layers, the high-level reasoning in the
NN is done via fully connected layers. In a fully connected layer, neurons connect
to all activations in the previous layer, as seen in regular NNs. They use these
features to classify the input image into various classes based on the training
dataset.

A CNN comprises several crucial components in addition to its layers. One of
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these essential components is the flattening step, which transforms the feature
map into a one-dimensional matrix. This matrix serves as the input for an ap-
pended Artificial Neural Network (ANN), which is responsible for generating
the final prediction of the CNN.

An illustration of the pipeline for classification using a CNN can be seen in Figure
2.7

Finally, the network learns the optimal filters to apply during the convolution
operation through BP.

CNNs were utilized in the research to learn features from songs and classify them
into different emotional quadrants according to Russell’s model.
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FEATURE LEARNING CLASSIFICATION

Figure 2.7: Visualization of CNN pipeline.
https://www.mathworks.com/discovery/convolutional-neural-
network.html

2.4.3 Recurrent Neural Networks

Recurrent Neural Network (RNN) are a type of ANN designed to process se-
quential data by retaining memory of past inputs. Unlike traditional feedforward
NNs, which process data sequentially without retaining memory, RNNs have
connections between nodes that form directed cycles, allowing them to exhibit
temporal dynamic behaviour.

There are four different types of RNNs, distinguished based on how far back

the output of a neuron is passed within the network: direct-feedback-network,
indirect-feedback-network, lateral-feedback-network, and complete-feedback-network
[DatabaseCamp, n.d.]. Depicted in Figure 2.8 is an example of indirect-feedback-
network architecture.

One significant advantage of RNNs is their ability to capture long-range depen-
dencies in sequential data by propagating information through time. This ca-
pability allows RNNs to model context and temporal relationships effectively.
However, RNNs face several challenges, including the vanishing and exploding
gradient problems.

The vanishing gradient problem happens when gradients become very small
while training and the network fails to learn long-range dependencies. On the
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other hand, the exploding gradient problem occurs when gradients grow expo-
nentially, causing instability during training and causing the weights to update
erratically, making it difficult for the network to converge to an optimal solution.

Figure 2.8: Visualization of a indirect-feedback-network (RNN).
https://databasecamp.de/en/ml/recurrent-neural-network

RNNs may also struggle with short-term memory, hindering their performance
on tasks requiring modeling complex temporal patterns with long-range depen-
dencies.

Long Short-Term Memory Networks

Long-Short Term Memory (LSTM) is a type of RNN capable of learning long-term
dependencies in sequence prediction problems.

LSTM solves the vanishing gradient problem through its unique architecture.
The input, forget, and output gates control the flow of information and gradi-
ents within the network, deciding what information should be kept, discarded,
or passed on to the next time step. This selective memory feature helps to prevent
the gradient from vanishing during BP.

The LSTM architecture consists of a cell and three types of gates: an input gate,
an output gate, and a forget gate, as shown in Figure 2.9.

The cell is responsible for retaining values over arbitrary time intervals. The for-
get gate, which looks at the current input and the previous hidden state, decides
what information should be discarded from the cell state by outputting a num-
ber between 0 and 1 for each number in the cell state. These numbers indicate
the degree to which each piece of information should be retained (closer to 1) or
forgotten (closer to 0).

The input gate updates the cell state with new information. It involves two parts:
a Sigmoid layer called the “input gate layer” that decides which values will be
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updated, and a tanh layer that creates new candidate values that could be added
to the state. The output gate decides what the next hidden state should be. The
hidden state, which contains information on previous inputs, is influenced by the
output gate, which determines what information it should carry to the next part
of the sequence.

While LSTM networks are robust for handling sequential data and learning long-
term dependencies, their effectiveness still relies heavily on the availability of
large, diverse datasets. Data augmentation techniques can be employed to arti-
ficially increase the variety of training data to enhance model performance and
generalisation.

X + » c(t)

Cell State

(Memory) tanh

i Sigmoid X |
! I—. X
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Input | ! | h (t)

Hidden State

Figure 2.9: Visualization of LSTM architecture.
https://databasecamp.de/en/ml/lstms

2.5 Data Augmentation

Data augmentation is a technique used to increase the diversity and size of train-
ing datasets by applying transformations directly to the raw audio signal. These
transformations help improve the robustness and generalization of DL models.
Below are some commonly used audio augmentation classic methods:

¢ Time Shifting: Randomly shifts the audio sample in time, introducing si-
lence at the beginning or end, making the model invariant to slight temporal
misalignments.

¢ Pitch Shifting: Alters the pitch of the audio sample up or down by a ran-
dom amount, such as a complete or half tone, to simulate variations in vocal
pitch or instrumental tuning.

* Time Stretching: Changes the tempo of the audio without affecting the

pitch, by randomly speeding up or slowing down the playback, helping
the model adapt to variations in speed.

25


https://databasecamp.de/en/ml/lstms

Chapter 2

* Power Shifting: Adjusts the volume of the audio sample by increasing or
decreasing the intensity by a certain number of Decibels (dB), making the
model robust to changes in loudness.

These augmentation techniques are essential for training DL models to handle
real-world variations in audio, improving their accuracy and reliability in tasks
such as music emotion recognition.

While data augmentation techniques enhance the diversity and robustness of
training data, understanding the structure of the audio is equally important for
accurate analysis and model training. This is where segmentation tools come into
play. By breaking down audio tracks into meaningful segments, these tools help
capture music’s emotional and structural nuances.

2.6 Evaluation Metrics

This section explores the various metrics crucial for evaluating hyperparameters
during model training, assessing model performance post-training, and validat-
ing hypotheses. Also, it highlights the typical metrics used in the experimentation
phase.

When creating a DL or ML model, it is crucial to select the correct hyperparame-
ters. These include the number of epochs, batch size, optimizer, and learning rate
for DL and cost, gamma, and kernel for ML. To evaluate these hyperparameters,
we monitor the loss function, which measures the error between predicted and
actual values and aims to minimize this error.

Optimization functions such as Bayesian search were employed to achieve this
goal. Bayesian search is a hyperparameter optimization technique that uses past
evaluation results to model the relationship between hyperparameters and model
performance. Based on this model, it iteratively selects new hyperparameters,
focusing on areas that are likely to improve performance, making it more efficient
than random or grid search methods.

During the experimentation phase, the primary objective of optimization was to
maximize the F1 Score. This metric considers both precision and recall, making it
a good indicator of the model’s overall accuracy.

Precision = L
~ TP+ FP
TP
Reeall = 75 7N

F1 Score — 2 x Precision x Recall

Precision + Recall
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Precision measures the proportion of true positives among all the predicted pos-
itive examples, while Recall measures the proportion of true positives among all
the actual positive examples.

For example, our model predicts that 80 images are dogs, out of which 75 are
actually dogs (true positives) and 5 are cats (false positives). Precision in this case
would be calculated as

75 » = 0.9375

Precision = 75—+5 = 30

This means that our model is correct in predicting an image being a dog around
93.75% of the time.

In another scenario, suppose there are 100 actual dog images in the dataset. Our
model identifies 75 as dogs (true positives) and misses 25 (false negatives). Recall
is calculated as:

75 75

Recall = —
cl = o525 T 100

=0.75

This indicates that our model correctly identifies approximately 75% of all actual
dog images in the dataset.

It is possible to analyze the performance of each individual class by using the
Confusion Matrix of the predicted and actual targets, along with the F1 Score for
each class and the overall F1 Score, as seen in 2.10.

Cn F1 Score Per Class

Cn Ll x
F1 Score Total| |

Figure 2.10: Generic Confusion Matrix with F1 Score example. [Louro, 2022]

For this study, recall, precision, and F1-score were selected because they provide a
balanced view of the model’s performance across all quadrants. Recall is particu-
larly useful for understanding the model’s ability to correctly identify all relevant
instances within a quadrant, while precision measures how accurate the model’s
positive predictions are. The F1-score, as a combination of these two metrics, of-
fers a single, balanced metric to assess classification performance across various
quadrants.

Additionally, the confusion matrix was computed to visualize the distribution of
classification errors across the four quadrants. This matrix allows us to see how
many clips were misclassified among the quadrants, offering more profound in-
sights into the model’s performance at a granular level. By analyzing misclas-
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sifications, we can better understand specific areas where the model struggles,
whether with certain quadrants or types of music.

2.7 Summary

Chapter 2 provides a comprehensive overview of fundamental concepts for un-
derstanding MER and MEVD. The chapter begins by defining emotions and dis-
cussing their relevance to music, explaining the distinction between perceived
and induced emotions, and highlighting how music can convey emotions in-
tended by the artist and evoke different emotional responses in listeners.

The chapter then explores various models for categorizing emotions to provide
a structured understanding. It covers categorical models like Hevner’s Adjec-
tive Circle, which organizes emotions into discrete categories, and dimensional
models like Russell’s Circumplex Model, which represents emotions on a contin-
uum using dimensions such as valence and arousal. These models offer valuable
frameworks for understanding how emotions are represented and perceived in
musical contexts.

Following this, the chapter introduces the fundamentals of ML, which play a
crucial role in MER. It describes various approaches, including supervised, unsu-
pervised, and reinforcement learning, focusing on supervised learning due to its
ability to leverage labeled datasets for precise emotion classification tasks. This
introduction to ML sets the stage for understanding how these techniques can be
applied to analyze and interpret emotional content in music.

Transitioning from the basics of ML, the chapter emphasizes the importance of
feature engineering in MER. Feature engineering involves processes such as fea-
ture scaling, integration, ranking, selection, and projection, which transform raw
audio data into meaningful features that enhance the accuracy of predictive mod-
els. The chapter provides an in-depth look at both standard and novel audio fea-
tures across various musical attributes, including rhythm, dynamics, expressive
techniques, melody, harmony, tone colour (timbre), musical texture, and musi-
cal form. These features are critical for capturing the emotional nuances of mu-
sic. Additionally, the chapter discusses audio frameworks like Marsyas and MIR
Toolbox, which facilitate the extraction and analysis of these features, thereby
supporting the feature engineering process.

Following feature engineering, the chapter discusses DL, highlighting its ability
to automatically learn and extract relevant features from raw data. It delves into
specific DL models such as CNNs and RNNs, including LSTM networks, explain-
ing their roles in analyzing and interpreting audio data.

To further enhance the effectiveness of DL models, the chapter highlights the
role of data augmentation. By applying transformations such as time shifting,
pitch shifting, time stretching, and power shifting directly to raw audio signals,
data augmentation artificially expands the diversity of training datasets. This
process makes models more robust and better equipped to handle variations in
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real-world audio data, ultimately improving their generalization capabilities.

Finally, it emphasizes the importance of evaluation metrics such as precision, re-
call, and F1-score in assessing the performance of MER models, noting that these
metrics provide a balanced view of the model’s accuracy and ability to correctly
classify emotional segments within music.

Chapter 3 will further develop the foundational knowledge from chapter 2 by
examining the latest advancements in MER models. We will explore different
approaches and methodologies used in the field and provide a detailed review
and constructive evaluation of existing research. This transition will help us un-
derstand the ongoing challenges and latest improvements in MER and MEVD,
allowing for a deeper understanding of how these technologies can be applied
and enhanced in future studies.
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State of the Art

This chapter aims to provide readers with an overview of the fundamental con-
cepts of MER models while examining the diverse range of approaches to these
models. Furthermore, a detailed review and constructive evaluation of the exist-
ing research in this field will be presented.

3.1 MER Datasets

Datasets are essential in advancing research in MER and MEVD by providing a
foundation for training and evaluating ML models. In static MER, the goal is to
identify a song’s predominant emotion by analyzing a smaller excerpt that best
represents the overall emotional content of the music. This approach allows for
classifying a song’s emotion based on a segment that captures the most dominant
emotional expression throughout the piece. In contrast, MEVD focuses on under-
standing emotional variation over time in a complete song and thus requires the
annotation of entire songs. Segmentation of songs is needed to gain a more nu-
anced understanding of emotion changes throughout the piece.

Numerous difficulties in current datasets used in music emotion recognition de-
lay the growth of this field. Limited size and diversity are common issues that
affect the applicability of models. The subjective nature of emotions, the incon-
sistency in annotations, and imbalances in class distribution are hurdles that can
impact the quality and reliability of datasets. Furthermore, capturing tempo-
ral dynamics and ensuring privacy in datasets present ongoing complications.
Copyright restrictions, lack of standardization, and domain specificity complicate
the use of these datasets. Moreover, the continuous development of technology
and research methodologies requires ongoing efforts to improve the quality and
relevance of music emotion datasets.

Developing MER datasets poses significant challenges. The process includes a
laborious manual annotation task associating emotions with each audio snippet
or song segment, making it time-consuming. For MEVD, defining segmentation
protocols introduces complexities related to song structure. Addressing the sub-
jective nature of music-induced sentiments and inter-listener variability requires
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employing multiple annotators, retaining only segments with high agreement.

Ensuring diversity in dataset characteristics, such as genre distribution and artists,
is essential for representativeness. Taking proactive measures, such as deliber-
ately choosing songs positioned away from central emotional tendencies on the
Russell plane and rigorously validating annotations, helps alleviate the impact of
emotion subjectivity. The dataset creation process typically begins with a large
set of songs. Still, it often results in a more focused subset, emphasizing the im-
portance of careful selection and refinement to ensure quality and relevance in
the final dataset.

The subsequent sections will furnish descriptions of the primary datasets utilized
in Static MER and MEVD, arranged according to their year of publication.

RWC

The Real World Computing (RWC) Music Database [Goto et al., 2002] is a copyright-
cleared music database available to researchers as a common foundation for re-
search.

The RWC Music Database contains 100 complete songs with manually labeled
section boundaries.

The RWC Music Database, while valuable, has its limitations. It’s relatively small,
with around 100 songs, which may not suffice for research, especially deep learn-
ing models that need large datasets. The specific collection of tracks could in-
troduce bias, potentially limiting model generalization. Lastly, it might lack di-
verse annotations beyond section boundaries, limiting its usefulness for specific
research tasks.

Million Song Dataset

The Million Song Dataset (MSD) [Bertin-Mahieux et al., 2011] is an invaluable
resource for MER, offering access to audio features and metadata for a vast col-
lection of one million contemporary popular music tracks. This freely available
dataset presents a comprehensive and detailed perspective to support various re-
search tasks within the realm of MER, curated from The Echo Nest, a large music
database acquired by Spotify shortly after the development of this dataset.

The dataset underwent rigorous data cleaning procedures, including disposal of
duplicates, error correction, and imputation for missing values. This dataset of-
fers significant value to researchers and enthusiasts in the field of MER due to its
extensive metadata and audio analysis for one million legally available songs to
The Echo Nest. It provides insights into contemporary popular music, including
trends in genre, instrumentation, production techniques, and patterns in song-
writing and performance styles.

However, it is worth acknowledging that the dataset has limitations, particularly
in diversity, as it lacks representation of world, ethnic, and classical music. It
is important to note that the dataset provides only features and metadata, with
annotations based on uncontrolled, user-generated tags from the Last.fm music
social network, which are often ambiguous and inconsistent. Despite this, its
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richness in contemporary popular music positions it as an asset for advancing
research and understanding within the MER domain.

MedleyDB dataset

MedleyDB [Bittner et al., 2014] is a meticulous, multitrack dataset designed for
annotation-intensive research for MIR. The dataset contains 122 songs, with 108
featuring melody annotations, making it an ideal tool for various MIR applica-
tions, including instrument identification, source separation, and automatic mix-
ing. MedleyDB was curated to address limitations in existing multitrack datasets,
such as small size, lack of variety in genre, and non-uniform formatting.

The selection of the 122 songs was deliberate, focusing on diversity in genre, in-
strumentation, and recording quality. The multitrack recordings underwent thor-
ough annotation processes, with melody FO annotations, which refer to marking
or labeling the FO of the melody in a musical recording, corrected manually by
annotators using a state-of-the-art extraction algorithm.

CAL500exp dataset

The new dataset introduced in this section is called CAL500exp [Wang et al.,
2014], an expansion of the CAL500 dataset.

The CAL500exp dataset is unique because it uses variable-length segments, rang-
ing from 3 to 16 seconds, while other segment-level datasets use fixed-length seg-
ments. It has 3,223 segments from 500 tracks, each annotated with 67 expert-
defined tags covering eight semantic categories: emotion, genre, best-genre, in-
strument, instrument solo, vocal style, song characteristic, and usage.

Labels are obtained by the decision of each tag by "majority voting" over at least
three paid university students. The dataset is available upon request to the au-
thors of the dataset.

Bi-Modal dataset

The dataset [Malheiro et al., 2016], initially formed by merging a lyrics dataset of
180 samples and an audio dataset of 162 clips from diverse sources, resulted in
a bimodal dataset containing 133 songs with both audio and lyrics. Thirty-nine
annotators independently categorized the audio and lyric, assigning valence and
arousal values utilizing a discrete Russell’s Arousal/Valence (A /V) model.

Features were organized based on fundamental musical concepts, with audio fea-
tures categorized under rhythm and melody, and lyric features derived from
state-of-the-art methods like bag-of-words, part-of-speech tagging, and gram-
matical class occurrences.

The final dataset, categorized into four quadrants based on valence and arousal,
raised concerns about potential imbalances due to its reduced size. Despite these
limitations, the dataset proposed by Malheiro et al. stands out for its bimodal
approach, combining audio and lyrics to enhance performance in emotion recog-
nition tasks. Even with a smaller sample count, its versatility underscores its
relevance for independent use in audio-based MER research.

33



Chapter 3

DEAM dataset

The MediaEval Database for Emotional Analysis of Music (DEAM) dataset [Al-
janaki et al., 2017] contains 1,802 music tracks and song excerpts from various
Western popular music genres. Each song and song excerpt is annotated with va-
lence and arousal scores, representing positive or negative emotions and energy
levels in music, respectively. The song excerpts are 45 seconds, while the dataset
includes 58 full-length songs.

Regardless, the DEAM dataset used in the benchmark is limited to Western pop-
ular music genres, with annotations based on perceived emotion, which reflects
subjective human opinions. Consequently, the challenge with annotating music
is that there can be a lack of consensus among annotators, as well as the presence
of unclear audio clips. Additionally, since emotions in music can be perceived
and interpreted differently across genres and cultures, the lack of detailed in-
formation on the distribution of annotators may contribute to variability in the
annotations.

4QAED

The 4-Quadrant Audio Emotion Dataset (4QAED) dataset [Panda et al., 2018] was
created by mapping annotations to the quadrants of Russel’s model, using War-

riner’s list of adjectives, the clips and their corresponding annotations originated
from the AllMusic APIL

After filtering and discarding poor-quality clips, the balanced dataset contained
225 samples for each quadrant, totaling 900 samples. It is worth noting that this
dataset suffers from issues such as its small size and lack of quality sources.

The core objective of the research, exemplified by 4QAED and other datasets,
highlights the essential need to create more comprehensive and high-quality datasets
for both MER and MEVD.

Harmonix

The Harmonix dataset [Nieto et al., 2019] is a comprehensive collection of an-
notations for over 900 tracks of Western popular music. The dataset includes
annotations of beats, downbeats, and functional segmentation. It also contains
additional metadata, such as MusicBrainz identifiers.

The dataset covers a wide range of Western popular music, with a strong empha-
sis on Pop, EDM, and Hip-Hop; the duration of these tracks varies as they are
tull-length songs.

It can be used for both static music emotion recognition and music emotion vari-
ation detection.

MERGE Audio Complete

The MERGE Audio Complete dataset [Louro et al., 2024b] consists of 3,554 30-
second song excerpts distributed across Russell’s quadrants: 875 songs in quad-
rant 1 (Q1), 915 songs in quadrant 2 (Q2), 808 songs in quadrant 3 (QQ3), and 956
songs in quadrant 4 (Q4), as illustrated in Figure 3.1.
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Distribution of Music Across Quadrants
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Figure 3.1: Complete dataset distribution across quadrants.

MERGE Audio Balanced

The MERGE Audio Balanced dataset [Louro et al., 2024b] provides an even dis-
tribution of samples across the four quadrants. It consists of 3,232 samples, with
808 songs in each quadrant (Q1, Q2, Q3, and Q4), as illustrated in Figure 3.2.

Distribution of Quadrants in the Dataset

1 2 3 4
Quadrant

Figure 3.2: MERGE Audio Balanced dataset distribution across quadrants.

MEVD Panda

The MEVD Panda dataset consists of 29 songs distributed across Russell’s quad-
rants: 10 songs in quadrant 1 (Q1), 7 songs in quadrant 2 (Q2), 2 songs in quadrant
3 (Q3), and 10 songs in quadrant 4 (Q4).
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Name Type Emotion Tax- | Audio Duration Size Notes/Observations
onomy
RWC Static MER Emotional tags | full-length audio | 100 audio | Limited size.
provided by | clips clips
users
MSD Static MER Emotional tags | 30 seconds audio | 1000000 Variety poses a chal-
provided by | clips audio lenge, with limited
users clips representation of
global, cultural, and
classical music.
MedleyDB Static MER User- 20 to 600 seconds au- | 122 audio | Potential  inaccura-
dataset contributed dio clips cies in annotations,
emotional tags. the utilization of
short excerpts rather
than complete songs,
and a restricted
number of excerpts.
CAL500exp MEVD 67 tags 3 to 16 seconds audio | 500 songs | The dataset remains
clips divided relatively  compact
into vari- | when compared to
ous clips. | other music datasets,
such as the MSD
Bi-Modal Static MER Russell’s A/V | 30 seconds audio | 162 au- | Despite well-
Model clips dio clips | executed annota-
and 133 | tions, the dataset
bi-modal | size remains notably

small, rendering
experimental results
less impactful.
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(...continued from previous page)

Name Type Emotion Tax- | Audio Duration Size Notes/Observations
onomy
DEAM Static MER and | Russell’s A/V | 45 seconds clips 1744 au- | Annotations rely
MEVD Model dio «clips | on the subjective
and 58 full | perspectives of hu-
songs man annotators and
may not accurately
capture the true emo-
tional content of the
music.
4QAED Static MER Russell's A/V |30 seconds audio | 900 audio | Equally distributed
Model clips clips among quadrants.
Harmonix Static MER and | Russell’s A/V | full-length audio | 912 audio | Limited genre classi-
MEVD Model clips clips fication.
MERGE Audio | Static MER Russell's A/V |30 seconds audio | A  max- | The limited dataset
Model clips imum size restricted the
of 3,554 | full exploration
audio of deep learning
clips experiments.
MEVD Panda MEVD Russell’s A/V | full-length audio | 29 audio | Unevenly distributed
Model clips clips across Russell’s
quadrants.

Table 3.1: Dataset’s Review.
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The common issues across most MER datasets include their limited size, which
can hinder the training of robust models, especially deep learning ones. They
may also contain biases due to the specific collection of tracks, potentially limit-
ing model generalization. Furthermore, some datasets might lack diverse anno-
tations, limiting their applicability for certain research tasks.

The dataset that stands out most is the 4QAED dataset for achieving the chal-
lenging task of obtaining equal distribution among the quadrants. The devel-
opment of more comprehensive, high-quality, and equally distributed datasets
would propel the field of MER forward, leading to more robust and accurate
emotion recognition models.

3.2 Static MER

Static MER is a subset of MIR that focuses on determining and categorizing the
dominant emotional content of a musical piece. This approach considers the en-
tire musical composition as a single entity and assigns it a single emotional label
or a set of labels.

This section offers a comprehensive overview of methods employed to address
the challenge of emotion classification in Static MER.

3.2.1 Classical Approaches

To classify the emotional content of music, practitioners typically employ a recog-
nition process that involves extracting various features such as tempo, pitch, tim-
bre, and rhythm. Subsequently, these features become the basis for training ML
algorithms, allowing for the classification of music’s emotional content into cate-
gories, such as the four quadrants of the Russell model.

The accuracy hinges on factors like the quality of the training data, feature selec-
tion, and the complexity of the employed ML algorithm.

In the study "Popular Music Retrieval by Detecting Mood" by [Feng et al., 2003],
the researchers utilized a dataset comprising 223 modern popular music pieces.
Each piece is labelled with one of four emotion classes: happiness, sadness, anger,
and fear. Extracting three audio features from these songs, they trained an ANN
using a split dataset of 200 training songs and 23 testing songs.

The NN achieved commendable classification accuracies of 86% for happiness,
75% for sadness, and 83% for anger. However, the accuracy for the fear emo-
tion class significantly lagged, reaching only 25%. This challenge, coupled with
the constraints of small datasets and feature sets that might not comprehensively
capture the diverse musical dimensions influencing emotion perception, eluci-
dates this outcome.

[Meyers, 2007] developed a mood-based music classification and exploration sys-
tem that uses audio files and lyrics to classify the emotional content in a song.
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The method employs Russell’s model and uses five features: mode, harmony,
tempo, rhythm, and loudness. A decision tree algorithm is used for preliminary
classification, followed by a K-nearest Neighbor (KNN) algorithm to classify the
song into eight categories. The output of the KNN algorithm is combined with
the affective value of the lyrics to predict the song’s global emotion. The dataset
used for this study was a private collection composed of 372 songs.

Although the study results were considered positive, a critical analysis reveals
that the authors did not offer a statistical method to assess the performance of the
models.

The study "Music Emotion Recognition with Standard and Melodic Audio Fea-
tures" [Panda et al., 2015] introduces a fusion of standard and melodic audio
features extracted from music recordings, leveraging Naive Bayes, KNN and
SVM algorithms for emotion classification. The dataset, built based on the All-
Music knowledge base and mirroring the Music Information Retrieval eXchange
(MIREX) Mood Classification task testbed, demonstrates the proposed approach’s
superiority over prior models relying solely on standard audio features.

Experimental results showcase remarkable performance, with the best outcome
of a 64% F-measure achieved using SVM with just 11 features. The authors posit
that incorporating standard and melodic audio features directly extracted from
audio holds promise for further improving results. However, despite achieving
high accuracy, the limited test collection included only three songs in the fear
category.

Within the continuum of the 2015 paper on "Music Emotion Recognition with
Standard and Melodic Audio Features," the research trajectory has shifted to con-
front the insufficiency of relevant musical characteristics for effective emotion
identification [Panda et al., 2020b]. In response, the study introduces 29 innova-
tive features tailored to refine emotion classification. To scrutinize the significance
of these features, a new dataset, the 4QAED dataset (as discussed in Section 2.2),
was crafted. The model proposed in a preceding work [Panda et al., 2015], un-
derwent training with diverse features, culminating in peak performance. Com-
bining the novel features with 71 standard features yielded an outstanding 76.4%
Fl-score. This achievement represents a noteworthy 9% improvement compared
to the use of a baseline set of 70 features.

A distinctive method compared to those examined previously is the approach
done by [Yang, 2021a], which proposes a model using NN technology that can
analyze the entire music and accurately express the ups and downs of music
emotion. The proposed model uses a combination of the BP neural network and
Artificial Bee Colony (ABC) algorithm to extract features from the music and clas-
sify emotions. While the BP neural network is adequate for pattern recognition,
it often struggles with getting stuck in suboptimal solutions, leading to less accu-
rate results. The ABC algorithm, inspired by honeybee foraging behaviour, opti-
mizes the initial weights and thresholds of the BP network, improving its ability
to explore the solution space effectively. This combination enhances accuracy by
avoiding suboptimal results and accelerates convergence, leading to faster and
more reliable emotion detection across music tracks.
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The dataset used in this research is the MediaEval Emotion in Music (MEM),
splitting 80% of the entire data set to be used for training, and the remaining 20%

is used for testing. The proposed model achieved an Root Mean Squared Error
(RMSE) of 0.1322 for arousal and 0.1066 for valence.

Despite these results, the model disregards crucial high-level aspects such as
lyrics and cultural context that significantly shape emotional responses to mu-
sic.

3.2.2 Deep Learning Approaches

Deep learning has fundamentally changed how we understand and interpret the
emotional content of music by autonomously extracting intricate features from
raw data. Its proficiency in handling complex patterns and temporal dynamics,
superior performance, and versatility position deep learning as an indispensable
tool.

However, it’s crucial to acknowledge that the efficacy of deep learning is contin-
gent upon the specific task at hand and the quality and volume of the available
data.

[Choi et al., 2016] pioneered the first DL approach for music auto-tagging, ad-
dressing emotion recognition. They introduced a Fully Convolutional Network
(FCN) with four two-dimensional convolutional blocks, each comprising convo-
lution, batch normalization, ReLU activation, and max pooling layers. This archi-
tecture processed spectrograms from raw audio signals, including STFT, MFCC,
and Mel-spectrograms. The Mel-spectrogram, closely aligning with human au-
ditory perception, yielded the best results. Their model produced a 50-feature
binary vector for multi-label classification and achieved impressive Area Under
the ROC Curve (AUC) scores of 0.894 on the GTZAN dataset and 0.851 on a sub-
set of the MSD, setting a new benchmark in the field.

Following this work, [Yang, 2021b] presented three features, relative tempo, mean,
and standard deviation of the average silence ratio, to model music emotion. Em-
ploying a NN classifier, they adeptly map the feature space to the emotion space,
effectively categorizing emotions into happiness, sadness, anger, and fear.

Comprehensive experimentation on a corpus of 353 popular music pieces show-
cases remarkable results, boasting a precision of 67% and a recall of 66% in music
emotion detection. The critical role of the BP neural network classifier is evi-
dent in its ability to map intricate features to nuanced emotions, thus laying the
groundwork for subsequent advancements in the domain of DP for MER. While
the initial results may seem promising, it is crucial to note that they can be mis-
leading due to the considerable imbalance in the dataset used for evaluation.

Exciting findings were presented in the paper by [Gémez Cafién et al., 2021],
which explores the correlation between speech and music in emotion recogni-
tion. In the study, the models were pre-trained using English and Mandarin
speech, then fine-tuned with music excerpts labelled with emotion categories.
The researchers found that features learned from the speech were transferable to
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music for emotion recognition. Furthermore, the study demonstrated that using
an intra-linguistic setting improved performance.

The researchers utilized the previously mentioned 4QAED dataset [Panda et al.,
2018] to pre-train the models and employed a Sparse Convolutional Autoencoder
(SCAE) to extract features from the speech data. They performed Bayesian op-
timization to select optimal learning rates and decays for the Adam algorithm
and evaluated the models” performance using accuracy and F1 score metrics. Al-
though the results may not have been satisfactory, the study confirmed a correla-
tion between the language of speech and emotion in music.

MER has advanced significantly in recent years, with researchers exploring new
and innovative ways to replicate humans’ perception of emotions in music using
ML techniques. One such approach is using RNN with LSTM units, which has
shown promising results in predicting the continuous values of emotions on the
axes of Russell’s Circumplex model.

[Grekow, 2021] presents a novel approach to automatic emotion detection in mu-
sic, using trained regression models to recognize emotions in music. It demon-
strates the usefulness of dividing the data into sequences and using recurrent
networks to achieve superior results compared to the SVM algorithm for regres-
sion. The study also analyzes the effect of the network structure and the set of
used features on the results of the regressors recognizing values on two axes of
the emotion model: arousal and valence. What sets this paper apart from others
is its use of a segment length (6 seconds) different from the standard static MER
and its proposal of a method of preparing data for recurrent neural networks by
extracting various audio features from the music fragments. These features are
then used to create sequential data for learning networks with LSTM units.

The research uses a database consisting of 324 six-second fragments of different
genres of music: classical, jazz, blues, country, disco, hip-hop, metal, pop, reggae,
and rock, taken from the publicly available GTZAN data collection. The best
results were obtained with RNN, comprising two layers of 248 LSTM units. For
arousal, the Mean Absolute Error (MAE) value was 0.12. For valence, the MAE
value was 0.15. The results show that using a two LSTM layer RNN gives better
results for both arousal and valence. One of the study’s main limitations is that
it can be challenging to determine which input features were used during the
feature extraction process.
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Paper Approach | Emotion Tax- | Datasets | Features and | Models Results Notes/Observations
onomy Input
[Feng et al., | Classical | Four emotions: | 223 popu- | 5 features Feed- Accuracy values | Unbalanced dataset
2003] ML Happiness, lar songs forward of 75% for sad- | - fear class is poorly
sadness, anger network ness, 83% anger, | represented.
and fear 86%  happiness
and 25% for fear
[Meyers, 2007] | Classical | Russell's A/V | 372songs |5  features | Decision | Good results No statistical
ML Model (Mode, Tree  for method to assess
Harmony, classifica- the performance of
Tempo, tion and the models.
Rhythm, KNN for
Loudness) emotion
prediction
[Panda et al., | Classical | MIREX'stask5 | Based on | 11 features (9 | Naive 0.64 F-measure Limited test collec-
2015] ML clusters MIREX melodic and | Bayes, tion included only
taxonomy | 2 standard) | KNN and three songs in the
SVM (top fear category.
result)
[Panda et al., | Classical | Russell's A/V | 4QAED 100 features | SVM 0.76 F-measure The small, semi-
2020b] ML Model (29 novel and automatically
71 standard) labeled dataset may
have inaccuracies,
and the model’s
performance is

uncertain due to
limited testing and
lack of Dbroader
validation.

¢ 193deyD



19374

Paper Approach | Emotion Tax- | Datasets | Features and | Models Results Notes/Observations
onomy Input

[Yang, 2021a] Classical | Hevner emo- | MEM Mel- BP NN RMSE of 0.1322 | The model over-

ML tional model spectrogram for arousal and | looks key high-level

0.1066 for valence

factors such as
lyrics and cultural
context.

Table 3.2: Review of MER Classical ML Approaches.
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Paper Approach | Emotion | Datasets Features and | Models | Results Notes/Observations
Taxonomy Input
[Choi et al., | Deep 50 emo- | MagnaTag Mel- FCN and | 0.894 AUC for | The use of the MSD
2016] Learning | tional ATune and | spectrogram, | varia- MagnaTagATune | undermines the
tags MSD STFT  and | tions and 0.851 AUC for | credibility of the
MECC of this | the MSD results, as the prob-
architec- lem is treated as a
ture multi-class  classifi-
cation task without
adopting widely
recognized emotion
taxonomies.
[Yang, 2021b] | Deep 4  labels | 223 samples | Relative NN 67% precision and | Imbalance in the
Learning | (hap- retrieved tempo, 66% recall dataset used for
piness, from avail- | mean, and evaluation
sadness, able sources | standard
anger and deviation of
fear) the average
silence ratio
[Gomez Cafion | Deep Russell’s | 4QAED Mel- CNN 0.48 F1-score The study’s results
etal., 2021] Learning | A/V spectrogram demonstrate a cor-
Model relation between the

language wused in
speech and the ex-
pression of emotion
In music.
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Paper Approach | Emotion | Datasets Features and | Models | Results Notes/Observations
Taxonomy Input
[Grekow, Deep Russell’s | 324 six- | 529 features | Modified | MAE of 0.12 for | Difficulty in identify-
2021] Learning | A/V second RNN and | arousal and 0.11 | ing which input fea-
Model fragments CNN for valence tures were utilized
from the cor- during the feature ex-
responding traction process.
samples  of
GTZAN

Table 3.3: Review of MER Deep Learning Approaches.
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Tables 3.3 and 3.4 present studies on MER using Classical ML and DL approaches.
Different emotion models are used, ranging from basic emotions to Russell’s Cir-
cumplex model.

Various datasets are used in these studies, including popular songs and specific
collections like DEAM and 4QAED. It's worth noting that the choice of dataset
can significantly impact the results obtained. For instance, two studies conducted
[Panda et al., 2015, 2020b] showed a 12% improvement in the F1l-score metric
due to using the 4QAED dataset, which was more balanced across the different
Russell quadrants than the other dataset.

The models exhibit varying performance, with certain ones achieving high accu-
racy or Fl-scores while others have lower performance. It is important to note
that different studies may use different metrics to evaluate their models, making
direct comparisons challenging.

However, many studies note limitations or challenges in their work, such as un-
balanced datasets, overlooking key factors like lyrics and cultural context, and
difficulties in feature extraction. These observations highlight the complexity of
MER.

3.3 Music Emotion Variation Detection

As previously mentioned, unlike static MER, the focus of Music Emotion Varia-
tion Detection (MEVD) is to analyse emotion variation throughout songs. This
section delves into the realm of MEVD approaches, presenting a comprehensive
review of the latest advancements in the field. It identifies the challenges asso-
ciated with these approaches and provides valuable insights for implementing a
robust architecture and methodology.

3.3.1 Classical Approaches

[Schubert, 2004] introduced a method that used linear regression models to pre-
dict the emotional content of a song in terms of arousal and valence. This model
relied on five standard audio features: melodic contour, tempo, loudness, texture,
and spectral centroid. Annotations were collected from 67 participants based
on Russell’s A/V model to create the dataset required to train and evaluate the
model. The dataset consisted of four Romantic music pieces and annotations
made in one-second intervals.

The evaluation of the model revealed that variations in loudness and tempo cor-
related with changes in arousal, but none of the analyzed features significantly
affected valence. It is important to note that this research uses a limited dataset
of songs from one genre.

Another approach done by [Panda and Paiva, 2011] proposes a system that pre-
dicts the emotion of small segments from full songs based on various audio
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features, using SVMs for classification and regression analysis and the models
trained with music clips previously annotated with A/V values.

The study used 189 clips, each lasting 25 seconds, from various genres, mainly
Pop/Rock from Western and Asian artists. They segmented the clips using two
audio frameworks, Marsyas and MIR Toolbox.

The researchers recruited volunteers to annotate the changes between quadrants
in 57 complete songs to conduct the testing. Two volunteers annotated each song.
However, only the songs with an 80% matching rate between both annotators
were selected for testing, resulting in the shortening of the testing set from 57 to
29 songs.

The study found that the accuracy of the system varies depending on the quad-
rant of Thayer’s model of emotion, with higher accuracy for segments in the first
and fourth quadrants, which correspond to positive valence, and lower accuracy
for segments in the second and third quadrants, which correspond to negative
valence.

The results obtained an average of 53.71% in terms of accuracy. Volunteers’ an-
notations may be inconsistent and subjective, affecting the system’s accuracy.

[Markov and Matsui, 2015] explored Gaussian Processes (GP) in recognizing hu-
man emotions in speech and music, showcasing their superiority over other mod-
els in capturing nonlinear data relationships. The study utilized the “MediaE-
val’2014” database consisting of excerpts from 1744 songs belonging to various
genres. The researchers randomly selected 500 clips for training and another 500
for testing. The results showed an RMSE of 0.0972 for arousal and 0.1002 for va-
lence. Despite the successful results, the authors acknowledge the computational
complexity of using GPs in real-time applications.

3.3.2 Deep Learning Approaches

A recent study by [Malik et al., 2017] builds upon the work of [Choi et al., 2016]
by employing a Convolution Recurrent Neural Network (CRNN) architecture for
music emotion recognition. This approach combines convolutional layers for fea-
ture extraction with recurrent layers for capturing temporal dependencies, en-
abling effective prediction of emotions within the two-dimensional A/V space

defined by the Russell model.

The study used 431 audio samples with a duration of 45 seconds for training the
model. However, only the final 30 seconds of each sample were used for training.
The annotations were made every 500 ms with arousal and valence values in the
range of [-1,1], resulting in 60 annotations for each of the 30-second samples. The
evaluation used 58 songs from the MedleyDB dataset [Bittner et al., 2014] and the
music website Jamendo.

Interestingly, the system using baseline features achieved the best results, with
an RMSE of 0.202 for arousal and 0.268 for valence.
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A Bidirectional Convolutional Recurrent Sparse Network (BCRSN) model was
proposed by [Dong et al., 2019], consisting of a robust model that combines the
strengths of CNNs and RNNs for music emotion recognition using Russell’s model.

The BCRSN model is designed to learn different levels of features adaptively
through convolution and subsampling operations. It leverages the feature maps
obtained by CNN as the input of RNN to enhance the model’s prediction perfor-
mance, incorporating a Weighted Hybrid Binary Representation (WHBR) method
to reduce computational complexity.

A portion of the DEAM dataset, consisting of 431 complete songs, was utilised to
train this model. The assessment set contains 58 songs from the same database.
The researchers also used 240 pop songs from the MTurk dataset 7 to assess the
model’s generalisation ability. The results on the DEAM dataset show a RMSE
of 0.123 for valence and 0.102 for arousal. On the MTurk dataset, the RMSE for
valence is 0.145, and for arousal, it is 0.079.

The proposed architecture by [OrjesSek et al., 2022] consists of stacking a one-
dimensional CNN layer, a distributed layer with autoencoder-based iterative re-
construction for latent feature extraction, followed by bidirectional Gated Recur-
rent Unit (GRU), and the max out fully connected layer for efficient valence-
arousal regression from the latent features that mines emotion-related features
from the raw audio waveform.

The datasets used for training and evaluation were used in [Dong et al., 2019],
and the emotional taxonomy was also Russell’s Circumplex model.

The experimental results show an RMSE for valence of 0.114 and arousal of 0.105
that outperforms the BCRSN approach trained with Mel-spectrogram as input,
which performs better in arousal, and the LSTM-RNN architecture outperforms
the proposed system in valence.
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Paper Approach | Emotion | Datasets Features Models Results Notes/Observations
Taxonomy and Input
[Schubert, | Classical Russell’s 4 romantic | 5 features | Linear Detected Small dataset and com-
2004] ML A/V songs, (melodic | regression | changes in | prised by only one genre.
Model annotated | contour, models arousal but not
every 1| tempo, in valence
second loudness,
texture,
and spec-
tral cen-
troid)
[Panda Classical Russell’s 57 full | Standard | SVM 53.71%  accu- | Small dataset.
and Paiva, | ML A/V songs an- | audio fea- racy
2011] Model notated in | tures, such
25 second | as tim-
intervals bre and
rhythm
[Markov | Classical | Russell’s | MediaEval | Standard | Gaussian | RMSE of 0.0972 | Computational complexity
and Mat- | ML A/V 2014, an- | audio Process for arousal and | of this model makes it dif-
sui, 2015] Model notated in | features regression | 0.1002 for va- | ficult to apply in large-
0.4 second lence scale applications
intervals

Table 3.4: Review of MEVD Classical ML approaches.
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Paper Approach | Emotion Datasets Features and In- | Models Results Notes/Observations
Taxonomy put
[Malik Deep Russell’s | DEAM Standard fea- | CNN and | RMSE of 0.202 | The length of the samples
et al., | Learning | A/V 431 sam- | tures or spec- | RNN for arousal | may evoke mixed emo-
2017] Model ple subset | trogram and 0.268 for | tions
for train- valence
ing and 58
complete
songs for
evaluation
[Dong Deep Russell’s | Portion of | Spectogram BCRSN RMSE of 0.101 | Model is very complex
et al., | Learning A/V the DEAM for arousal | leading to long training
2019] Model dataset and 0.123 for | time
and valence in the
MTurk DEAM dataset;
RMSE of 0.079
for arousal
and 0.145 for
valence in the
MTurk dataset
[Orjesek Deep Russell’s | Portion of | Standard  au- | Modified | RMSE for the | Questioning the model’s
et al., | Learning A/V the DEAM | dio features | RNN and | valence of 0.114 | performance arises from
2022] Model dataset and Mel- | CNN and arousal of | comparing its RMSE scores
spectrogram 0.105 to those of other models.

Table 3.5: Review of MEVD Deep Learning Approaches.
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Tables 3.5 and 3.6 present studies on detecting variations in music emotions us-
ing Classical ML and deep learning. Both approaches have their strengths and
weaknesses.

Classical ML models, such as Linear Regression, SVM, and Gaussian Process Re-
gression, are relatively simple and computationally efficient. They are easier to
interpret and can provide insights into the most important features of emotion
recognition. These models may not capture complex, non-linear relationships in
the data.

DL models, such as CNNs, RNNs, and hybrid models, can model complex, non-
linear relationships and capture high-level features in the data. However, these
models are computationally intensive and require large amounts of data. Addi-
tionally, these models can be prone to overfitting, especially when the dataset is
small or unbalanced.

The diversity and size of datasets used are often limited, raising questions about
the generalizability of the results. Using larger and more diverse datasets could
improve the robustness of the findings.

To sum up, Classical ML and DL have advantages and disadvantages. The selec-
tion between the two should depend on the specific requirements of the task, such
as the complexity of the data, the availability of computational resources, and the
need for model interpretability. In the future, researchers should focus on devel-
oping models combining both approaches’ strengths, such as interpretable deep
learning models. Additionally, they should work on devising more reliable and
comprehensive evaluation techniques.

3.4 Segmentation Tools

Segmentation tools are essential in MER and MEVD fields. These tools help
to break down audio tracks into distinct segments, each representing a mean-
ingful unit within the musical composition. This process involves identifying
boundaries, transitions, and structural elements, contributing to a detailed un-
derstanding of the music’s emotional dynamics. Segmentation tools are helpful
for researchers, musicians, and technology developers in various applications,
from analyzing emotional signals in music to enhancing the accuracy of emotion-
related models. This exploration will explore the significance of segmentation
tools, their structures, and their impact on advancing our comprehension of mu-
sical emotions.

3.4.1 DeepChorus

The DeepChorus model comprises two key components: a Multi-Scale Network
for generating initial representations of chorus segments and a Self-Attention
Convolution Network for further processing the features into probability curves
that indicate the presence of chorus. The model then employs an adaptive thresh-
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old to convert the output probability curve into a binary value, i.e., chorus or non-
chorus. For a better understanding, refer to Figures 3.3 and 3.4, which visually
represent the model.

Multi-Scale Network . SA-Cony Network
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Figure 3.3: Visualization of the DeepChorus Model [He et al., 2022].
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Figure 3.4: Classification of Chorus using an adaptive threshold.

The study employed a training dataset of 886 tracks from the HARMONIX dataset
[Nieto et al., 2019] and 102 songs from The Beatles and Michael Jackson sourced
from the Isophonics dataset [Mauch et al., 2009]. Diverse datasets were tested,
including 508 songs from the SALAMI [Smith et al., 2011], 100 pieces from RWC
datasets [Goto et al., 2002], and 210 songs with the "Popular" tag from SALAMI,
specifically chosen to focus on widely recognized tracks that are more likely to
exhibit standard structural features. This comprehensive approach allowed for a
thorough evaluation of the proposed method’s effectiveness and generalizability.
This model achieved F1-scores of 0.501, 0.675, and 0.611 on the three test datasets
above.

3.4.2 All-in-One

The development and success of the All-in-One segmentation tool [Kim and Nam,
2023] have certainly been promising in music analysis. By comprehensively analysing
all structural elements within a song, All-in-One has set itself apart from its coun-
terparts and shown great potential for further advancements in the field. Prior
efforts, including works by [Ullrich et al., 2014] and [Wang et al., 2022], laid the
groundwork for song segmentation. However, the results achieved by All-in-One
have surpassed those of previous methods.

Figure 3.5 represents the All-in-One structure where the model first extracts fea-
tures and effectively reduces dimensionality from demixed sources. The demix-
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ing process uses the Hybrid Transformer Demucs source separation algorithm,
which extracts drum, vocal, bass, and other instrument sources. The extracted
sources are then fed into three convolutional and max pooling layers, resulting in
a compact representation of the separated stems.

To model both temporal and instrumental dependencies, the model stacks 11
Transformer modules. Each module comprises a 1D Dilated Neighborhood At-
tention (DiNA) block and a 2D Neighborhood Attention (NA) block. The 1D
DiNA block captures long-term temporal dependencies, and the 2D NA block
focuses on inter-instrument dependencies.

The model employs four fully connected layers to predict probabilities for beat,
downbeat, segment boundary, and structure label for each time frame. Post-
processing steps such as applying Dynamic Bayesian Networks (DBN) for beat
and downbeat tracking, refining probabilities, and selecting peaks enhance the
model’s accuracy. A peak-picking method based on sliding window averages
and highest probabilities are employed for segmentation and structure labeling.

Demixed Transformer Module Post-Processing
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Figure 3.5: Visualization of the All-in-One Model [Kim and Nam, 2023].

The Harmonix Set [Nieto et al., 2019], consisting of 912 popular Western songs
with annotations for beats, downbeats, and functional segments, was used to
train and evaluate the model. The paper has adopted the data preprocessing
steps recommended in the previous work of [Wang et al., 2022] to guarantee data
consistency and compatibility. For performance evaluation, the authors employ
an 8-fold cross-validation strategy. Within these folds, six are allocated for train-
ing, one for validation, and one for testing.

In the context of segmentation, the proposed model exhibited notable perfor-
mance, achieving a hit rate F-measure of 0.660 with a 0.5-second time window.
Moreover, the model’s performance in structural labeling is remarkable as it has
achieved state-of-the-art results. Compared with the ground truth, the predicted
structural segmentation of pairs of frames has an F-measure of 0.738, demonstrat-
ing its high accuracy.
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3.5 Summary

Chapter 3 thoroughly explores the current state of the art in MER and MEVD
models. It begins with an in-depth discussion of MER datasets, emphasizing their
crucial role in advancing MER and MEVD research. Static MER focuses on iden-
tifying static emotions in music by analyzing smaller excerpts, whereas MEVD
aims to understand emotional variations over time in entire songs, necessitating
comprehensive song annotations.

The chapter highlights several challenges faced by current datasets, such as lim-
ited size, diversity, and annotation inconsistencies. These limitations impact the
reliability and applicability of MER models. The subjective nature of emotions,
the inconsistency in annotations, and imbalances in class distribution are signif-
icant hurdles. Additionally, capturing temporal dynamics and ensuring privacy
in datasets present ongoing complications, copyright restrictions, lack of stan-
dardization, and domain specificity. To address these issues, researchers must
develop more comprehensive and high-quality datasets.

Following this, chapter 3 examines static MER and MEVD approaches. Classical
methods involve feature extraction from music, focusing on tempo, pitch, timbre,
and rhythm. These features are then used to train ML algorithms to classify mu-
sic’s emotional content. For instance, in the study [Feng et al., 2003], researchers
used neural networks to classify emotions in music, achieving notable accuracy
for emotions like happiness, sadness, and anger.

Furthermore, this chapter also delves into deep learning approaches, which have
significantly transformed MER and MEVD by autonomously extracting intricate
features from raw data. Deep learning’s proficiency in handling complex patterns
and temporal dynamics makes it an indispensable tool for MER and MEVD. No-
table studies are discussed, such as the work of Panda and Paiva in 2011, which
employed an SVM model for automatic emotion tracking in music. This study
utilized Russell’s Circumplex model to predict the emotional content of music
over time, highlighting the potential of ML algorithms in capturing the dynamic
nature of music emotions.

Finally, the chapter then shifts focus to the significance of segmentation tools in
MER and MEVD, explaining how tools like DeepChorus and All-in-One help
break down audio tracks into distinct segments, each representing a meaning-
ful unit within the musical composition, thus aiding in detailed analysis. This
segmentation enables a more detailed analysis of the structural and emotional
elements of music.

Chapter 4 builds upon understanding the approaches and methodologies used in
MER and MEVD by detailing the experimental procedures and outcomes. This
upcoming chapter will focus on implementing the All-in-One segmentation tool
and applying methodologies like SVMs and CNNs to enhance the classification
accuracy of emotional segments in music.
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Methods and Experiments

In Chapter 4, the research methodologies discussed earlier are applied. The pro-
cess begins by replicating previous studies to establish a reliable baseline. Then,
experiments using segmentation tools, including exploration of the DeepChorus
tool, are conducted. However, only the All-in-One tool is used to segment the
songs for further use in Classic and DL approaches. Classical and deep learning
approaches are tested, and a detailed analysis of the implementation, datasets,
and results is provided.

This chapter details the experiments conducted to evaluate whether the All-in-
One tool delivers effective results in ML and deep learning. The goal is to test
its effectiveness and understand how well it helps for more accurate emotion
variation detection.

4.1 Replication of Previous Work

This section describes the work done by Panda and Paiva to predict A/V values
and quadrants, classifying emotion in window segments from full songs. Next,
an approach to solve this problem is presented, trying to replicate the study men-
tioned above.

41.1 Previous Work

In 2011, Panda and Paiva studied MEVD using SVMs and audio features. To
this end, the authors used a dataset of 189 clips originally collected by [Yang
et al., 2008] for training, mainly Pop/Rock from Western and Asian artists, each
25 seconds long, annotated with arousal and valence values by volunteers.

The authors followed two different approaches to achieve categorical MEVD, i.e.,
predict quadrants: one based on classification, where they trained a Support
Vector Classification (SVC) to predict the quadrant of each audio segment, and
another based on regression, where two Support Vector Regression (SVR) were
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trained to predict the A/V values of each segment, which were later converted to
quadrants of the Russell’s Circumplex.

From the 189-clip dataset, various audio features were extracted from each clip
using two audio frameworks, Marsyas and MIR Toolbox. This was followed by
Forward Feature Selection (FFS) to select the most relevant features for this spe-
cific approach. The researchers experimented with various combinations of fea-
tures, window sizes, and frameworks to obtain the classifier or regressors that
better predicted the quadrant of each clip.

Next, the authors used the two emotion tracking solutions to track emotion vari-
ation over time by predicting the quadrant of 29 complete song versions seg-
mented into small consecutive 1.5-second clips. The 29 songs were selected from
an initial set of 57 analyzed by volunteers, only including those achieving an 80%
or higher matching annotation rate. They compared the predicted emotion tracks
with manual annotations made by two volunteers, as seen in Figure 4.1, and mea-
sured the accuracy of their approach. Table 4.1 presents the results of this study.

1.10.Bon_Jovi.08 Save_the_world.wav

[ —
| —s—annotation

] 50 100 150 200 250 300

AW

Figure 4.1: Example of a tracking annotation [Panda and Paiva, 2011].

All features Feature selection

Quadrants | A/V | Quadrants | A/V
Marsyas 53.45% 48.90% 52.55% 50.89%
MIR Toolbox 52.70% 55.95% 54.51% 56.30%
Marsyas + MIR T. 53.66% 55.95% 54.72% 54.96%

Table 4.1: Comparison of performance between Marsyas, MIR Toolbox, and their
combination using all features and feature selection in the 29 song dataset.

4.1.2 Replication of Previous Work

In order to explore and validate the MEVD methodologies in emotion tracking,
this subsection begins by replicating the work of [Panda and Paiva, 2011] on
MEVD using SVMs and audio features. A vital aspect of this endeavour entailed
the conversion of the source code from MATLAB to Python. This conversion was
carried out to enhance the accessibility and user-friendliness of the methodology
for researchers interested in exploring diverse MEVD techniques on audio using
different models.

Contrasting with the original study, two feature files were tested independently,
one with the features extracted using the Marsyas tool and another using the
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MIR Toolbox. Thus, the tests were divided into three parts: prediction of emo-
tion using the MIR Toolbox, prediction of emotion using the Marsyas tool, and
prediction using both Marsyas and MIR Toolbox.

Similarly to the approach used in [Panda and Paiva, 2011], an SVC was trained to
predict the quadrant of each segment of an entire song. Additionally, a regression-
based approach was employed, where two SVR were trained to predict the A/V
values of each segment. These A/V values were then converted into quadrants
of Russell’s Circumplex model and used as labels for classification.

In pursuit of improved classification results, the SVM model needed further opti-
mization regarding the quadrants. As for A/V, the results were satisfactory, and
there was no need to further optimize the model since the aim of this work was
to replicate the results of [Panda and Paiva, 2011]. The distribution of songs in
Yang’s dataset, used for training, across the quadrants was imbalanced, with an
excess in the first quadrant and a shortage in the second quadrant, as seen in
Figure 4.2.

To address this issue, we experimented by adjusting the SVM model to handle un-
balanced data more effectively. This involved incorporating class weights that pe-
nalized the misclassification of the minority class more heavily. However, while
managing the imbalanced song distribution, these adjustments to the SVM inad-
vertently resulted in overfitting. Consequently, this overfitting limits the model’s
ability to generalize well to new, unseen data, exhibiting poor performance and
failing to achieve satisfactory results.
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Figure 4.2: Yang’s dataset distribution across quadrants [Panda and Paiva, 2011].

Various optimization techniques, including grid search, bayesian search, and ran-
dom search, were employed to identify the optimal hyperparameters that would
work best with our unique data distribution.

The hyperparameters that demonstrated peak performance for SVM quadrants,
both with and without FFS, across the different feature types are as follows (Table
4.2):
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FFS No FFS
Approach C |gamma kernel| C |gamma | kernel
MIR 49.835| 0.017 | poly [13.679| 5.674 RBF
Marsyas 1.090 | 0.012 | RBF | 1.047 | 7.702 |linear
MIR+Marsyas | 0.214 | 0.944 | RBF | 1.020 | 0.013 RBF

Table 4.2: Selection of the hyperparameters for the SVM model.

Since MEVD Panda dataset was too imbalanced, with 10 songs in the first quad-
rant, 7 in the second, only 2 in the third, and 10 in the fourth quadrant, the MEVD
dataset was created for testing. This dataset was based on the original 29 songs
but added five more songs to the third quadrant to reduce the imbalance. The
MEVD dataset contained 10 songs in quadrant 1, 7 in quadrant 2, 7 in quadrant
3, and 10 in quadrant 4.

Finally, the predicted emotions were compared to the ground truth annotations,
the results are presented in Table 4.3.

All features Feature selection

Quadrants | A/V | Quadrants | A/V
Marsyas 50.36% 55.04% 47.63% 55.03%
MIR Toolbox 51.58% 55.11% 49.48% 55.10%
Marsyas + MIR T. 55.15% 55.23% 55.61% 55.53%

Table 4.3: MEVD tracking results for each framework and the combination of the
framework in the MEVD datatset.

4.2 Experiments with Segmentation Tools

In this section, we will delve into segmentation tools. Segmentation tools, such as
DeepChorus [He et al., 2022] and All-in-One [Kim and Nam, 2023], are software
or algorithms designed to partition a musical piece into distinct sections based on
criteria such as musical structure. The primary objective of these tools is to enable
a more focused analysis of specific portions of the song, allowing researchers to
examine and comprehend the characteristics, patterns, or emotions associated
with each segment more effectively.

In this case, the hypothesis was to test whether these segmentation tools, which
divide the song based on a more logical musical structure rather than a fixed
division of 1.5 seconds, could improve emotion prediction results within these
segments.

4.2.1 DeepChorus

DeepChorus is a deep learning model created to detect the chorus in music. It
identifies the most repeated and recognizable song sections, usually the chorus,
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by analyzing Mel-spectrograms using a combination of multi-scale convolution
and self-attention mechanisms.

Preliminary experiments conducted with the DeepChorus tool tested its perfor-
mance across several music genres, including Pop, Rock, Hip-Hop, Latin, Elec-
tronic, and Country, with the objective of identifying and understanding the
tool’s weaknesses. With these, we concluded that DeepChorus struggles to pro-
vide accurate predictions, mainly when a pre-chorus is present in a song.

The code was modified to visualize the comparison between the ground truth
chorus (displayed in the top graph of the image) and the predicted chorus (shown
in the bottom graph).

Chorus prediction for the song "Gods_Country_Country"

Ground truth chorus

’ Time (seconds) - )

Predicted chorus

Time (seconds) i B
Al

Figure 4.3: Chorus identification for country music "God’s Country".

Chorus probability

Chorus probability

Chorus prediction for the song "DILUVIO_Latin"

- l ) ’
Time (seconds)

Figure 4.4: Chorus identification for latin music "Diluvio".

Ground truth chorus

Chorus probability
=

Chorus probability

DeepChorus is less effective for music genres like Latin, as seen in Figure 4.4
and Electronic, but yields satisfactory results for Country, as seen in Figure 4.3,
and Hip-Hop. This discrepancy can be attributed to Country and Hip-Hop mu-
sic typically following a more standardized structure, featuring an intro followed
by a chorus, verse, and a recurring pattern. On the contrary, Latin music devi-
ates from this structure, incorporating elements like pre-chorus, bridge, and other
structural components that DeepChorus may struggle to analyze effectively.

Due to its limitation of only detecting the chorus, DeepChorus was not used in
further experiments with the classical and deep learning approaches. This limita-
tion prevents the tool from taking advantage of the structural separation within
a song to detect emotional variation, as it focuses solely on identifying the chorus
and cannot segment other important sections like verses, bridges, and interludes.
This restriction reduces its potential for more detailed emotional analysis across
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the entire musical structure, making it unsuitable for the more comprehensive
segmentation needed in these experiments.

4.2.2 All-in-One

The All-in-One model is a deep learning-based tool for comprehensive music
structure analysis. It performs tasks such as beat and downbeat tracking, seg-
mentation of a song into distinct sections, and labeling of segments based on their
roles, such as identifying verses and choruses. Using advanced transformer archi-
tectures with dilated neighbourhood attention mechanisms, the model effectively
captures both local details and long-term patterns in the musical piece. This en-
ables segmentation by detecting where one section ends and another begins and
labeling by understanding the context of each segment within the overall song
structure.

The experiments conducted in this section aimed to better understand the All-
in-One tool’s capabilities across the same music genres as DeepChorus and gain
insights into its potential limitations. We found that this tool faces challenges in
delivering accurate predictions, particularly in songs that include a pre-chorus,
post-chorus, interlude, and bridge.

According to the analysis, All-in-One, like DeepChorus, has demonstrated supe-
rior performance to Country songs that follow the traditional musical structure
of chorus, verse, chorus, verse. However, All-in-One’s performance was com-
paratively weaker in Latin music, with structural elements such as pre-chorus,
post-chorus, interlude, and bridge. A script was created to visualize the compari-
son between the ground truth segments (displayed in the top graph of the image)
and the predicted chorus (shown in the bottom graph).

Annotated

verse chorus verse chorus erludéridge chorus

0:18 0:45 113 1:27 2:00 2:08 2:22
Time (min:sec)

Predicted

“ verse chorus | chorus | verse |chorus | chorus §CEEME T LN chorus | chorus | chorus chorusl

0:01 0:18 0:46 0:59 113 1:27 140 1:54 2:08 2:22 2:35 2:49 3:03 3:16
Time (min:sec)

Figure 4.5: Segment and segment label identification for country music "God'’s
Country".

From the two above Figures, it is conclusive that All-in-One also faces difficulties
similar to DeepChorus, as it has poor results in Latin music as seen in Figure
4.6 and better results in country music as seen in Figure 4.5. Like DeepChorus,
the results are better in Hip-Hop and Country music and much worse in Latin
and Electronic music. Music genres that got worse results may be because of
structural elements like pre-chorus, post-chorus and bridge.
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Annotated

M o ﬁ o o H - H o “

0:00 0:10 0:20 0:40 0:52 1:32 1:52 2:01 2:22 2:31 2:52
Time (min:sec)

Predicted

verse verse verse chorus verse verse chorus chorus n

0:00 0:25 0:40 101 1:36 151 2:20 2:42 312 3:28
Time (min:sec)

Figure 4.6: Segment and segment label identification for latin music "Diluvio".

4.3 Classical Approach

This section explores alternative segmentation strategies in MEVD, specifically
comparing variable segments based on musical structure obtained via All-in-One
with fixed-size 1.5-second segments, as previously used in [Panda and Paiva,
2011]. The primary objective was to assess whether a segmentation approach
grounded in musical structure could provide advantages over a 1.5-second fixed-
interval method. In addition to the 2011 study, this research also tested an ad-
ditional set of emotionally relevant features proposed by Panda et al., which in-
clude musical dimensions such as melody, harmony, rhythm, dynamics, expres-
sivity, and texture, in comparison to the standard audio features that are primar-
ily based on low-level spectral characteristics [Panda et al., 2020a]. This approach
allowed for a more comprehensive analysis of how different segmentation and
feature sets influence the accuracy of emotion classification in music.

The aim is to identify the optimal segmentation strategy and segment size for
classifying emotions into Russell’s four quadrants using the MERGE Audio Com-
plete dataset, proposed in [Louro et al., 2024b], for optimisation purposes. The
dataset includes 3,554 clips, each 30 seconds long. The distribution of the dataset
is depicted in Figure 3.1. The test set used for our experiments was the MEVD
dataset, which, as previously mentioned in Section 4.1.2, is based on Panda’s 29-
song dataset, with the addition of 5 songs specifically in the third quadrant to
help reduce the imbalance of the dataset. This resulted in 34 full-length songs, as
shown in Figure 4.7. The emotion annotation for the training clips is static, with
no variation over time. Additionally, a 3-fold cross-validation experiment with
30 repetitions (30x3-fold CV) on the test dataset was conducted to evaluate the
model’s performance on a dynamic dataset where emotions vary over time.

The achieved results, with the best F1-score of 53.17%, indicate that the potential
of this song segmentation approach was not fully utilized, possibly due to the
small dataset used. Nonetheless, the preliminary results are encouraging.

4.3.1 Datasets

The classical approach utilized the MERGE Audio Complete dataset for training,
as described in Section 3.1, and the MEVD dataset for evaluation, as described in
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Section 4.1.2. An illustration of the MEVD dataset can be seen in Figure 4.7.

Distribution of Quadrants in the Dataset

Quadrant

Figure 4.7: MEVD dataset distribution across quadrants.

4.3.2 Methodology

This subsection covers the methodology used in the entire process, from feature
extraction to classification. Figure 4.8 gives an overview of the complete process
of classifying emotion using an SVM model. Beyond the depicted below, the
features were previously pre-processed and selected for the experiment to train
the model and optimise the parameters.

Feature Feature e Post-

Extraction —@ Dimensionality —e@ Selection —® Classificaton —@ processing

1.5 second window Reduction ‘l
Audio Comparison of
Pre-processing Results
‘ Feature Feature Feat Post-
Extraction —® Dimensionality —@ Sela “tfe —a@ Classification —@ Rereeesin
All-in-One segments Reduction election P 9

Figure 4.8: High level overview of the methodology.

Feature Extraction with 1.5-second segments

The feature extraction process involved standardising all audio clips from the
dataset to a predefined format - specifically, the WAV PCM format with a sam-
pling rate of 22050 Hz, 16-bit quantisation, and mono-aural configuration.

According to studies conducted by Vieillard et al., it takes an average of 483 ms,
1446 ms, 1737 ms, and 1261 ms to recognize happy, sad, scary, and peaceful ex-
cerpts, respectively. Emotions such as scary and peaceful, associated with the
third and fourth Russell’s quadrants, tend to take more time to detect than emo-
tions like happiness. This is because emotions from the third and fourth Russell’s
quadrants are more complex and have less energy, making them more difficult to
detect.
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However, a more recent study by Paquette et al. found that listeners accurately
identified emotions associated with brief musical clips averaging 1.5 seconds.

Therefore, for the MEVD dataset, features were extracted from 1.5-second win-
dows within each song after standardization. In contrast, features were extracted
from each 30-second clip for the MERGE Audio Complete dataset, as it was not
feasible, due to the computational cost, to divide the 3,554 MERGE Audio Com-
plete samples into 1.5-second windows.

Feature Extraction with All-in-One segments

The feature extraction uses the segments predicted by the segmentation tool. The
window size is dynamic and varies based on the segment size. An example of
song segmentation is provided in Figure 4.9, where the window size varies based
on each segment size, where the first segment has a length of 21 seconds and the
second has 16 seconds.

Predicted

verse verse chorus verse chorus chorus chorus

0:00 0:21 0:37 0:58 131 1:51 2:09 2:32
Time (min:sec)

Figure 4.9: Segment and segment label prediction for the music "Tell Laura I Love
Her".

It is important to evaluate the performance of the segmentation tool before us-
ing its predicted segments for feature extraction. The dataset used for this eval-
uation consists of 34 musical pieces covering all four emotional quadrants. To
annotate these 34 songs regarding structural segments, we consulted the Genius
website (https://genius.com/), which provided detailed insights into the song
structures. This process ensured the segmentation aligned accurately with each
song’s composition and lyrics. An in-depth analysis of the metrics employed in
[Kim and Nam, 2023] was undertaken to conduct this evaluation.

The authors of the All-in-One paper mentioned specific metrics used for segmen-
tation evaluation. For segmentation assessment, they used the F-measure of hit
rate at 0.5 seconds, and for evaluating segment labelling, they used the F-measure
of pairwise frame-level clustering. However, [Nieto et al., 2020] is referenced for
detailed insights into these metrics.

The hit rate metric assesses the accuracy of predicted segment boundaries against
annotated boundaries by quantifying the proportion of correctly identified bound-
aries within a predefined tolerance parameter (typically 0.5 seconds). It combines
precision and recall, representing the ratios of correctly identified boundaries to
predicted and annotated boundaries, respectively, to compute the F1-measure,
providing a comprehensive evaluation of segmentation accuracy. To assess the
overall F1-measure of the dataset, a weighted average F1-measure was employed.

In contrast, the Pairwise Clustering metric for segment labelling compares pairs
of time frames with identical labels within a given segmentation. If two frames
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are labelled "A," they form a pair. This metric computes the precision and re-
call of the estimated pairs against the reference pairs and merges them using the
Fl-measure. A higher Fl-score denotes better agreement between the real and
predicted segmentations, thus indicating better segment labelling performance.

An evaluation was conducted on this dataset using these two particular metrics.
The analysis resulted in a weighted average F-measure of 70.10% for the seg-
mentation and a Pairwise Clustering score of 73.56% for the labelling of these
segments, indicating excellent performance. Therefore, although not perfect, the
predicted segments can be used for feature extraction.

Dimensionality Reduction

After feature extraction, a dimensionality reduction step was performed. Initially,
features with zero standard deviation were removed, followed by eliminating
heavily correlated features with a correlation factor exceeding a predetermined
threshold (set experimentally at 0.9). When two features exhibited high correla-
tion, the logic was to eliminate the second feature of the correlated pair.

Feature Selection

The RelieF algorithm is used to select the most essential features. The algorithm
ranks features based on their importance, after which each set of top features
is further analysed. Varying subsets of features were selected, denoted by the
parameter X, ranging from 5 to 1250 integer values.

Training Phase

Hyperparameter optimization was carried out on each set of top features using
a Bayesian search to customize optimal SVM models for specific datasets. This
comprehensive approach encompassed parameters such as kernel type, gamma,
cost, and polynomial degree (if applicable), covering a range of values for cost
(1le-6 to 5000) and gamma (1e-6 to 100) and polynomial degree (1 to 5). The kernel
types considered included Linear, Polynomial, Radial Basis Function (RBF), and
Sigmoid, as outlined in [Brownlee, 2024].

The optimization process utilized repeated stratified 10-fold cross-validation with
ten repetitions, aligning with the approach proposed by [Duda et al., 2001]. This
methodology aimed to maximize the Fl-score for each dataset, thereby improv-
ing the robustness and effectiveness of the classical SVM-based music analysis
framework.

A test was conducted on a range between 5 to 1250 features to determine the opti-
mal number of features for optimal model performance. The conclusion was that
the model performs best when using 900 features. Table 4.4 displays the F1-scores
achieved by the model across different numbers of features and hyperparemeters.
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Number of Features Cost Gamma | Kernel | F1-score

5 3303.03289 | 0.14883 RBF 0.524
10 4999.99999 | 0.02128 RBF 0.583
20 4999.99999 | 0.00734 RBF 0.603
30 4999.99999 | 0.00296 RBF 0.623
40 4999.99999 | 0.00204 RBF 0.644
50 4999.99999 | 0.00163 RBF 0.653
60 4087.42455 | 0.00079 RBF 0.653
70 4999.99999 | 0.00053 RBF 0.660
80 1162.23762 | 0.00086 RBF 0.657
90 71.81172 | 0.00268 RBF 0.656
100 83.36123 | 0.00164 RBF 0.664
150 17.99398 | 0.00225 RBF 0.677
200 24.16841 | 0.00093 RBF 0.685
250 18.94706 | 0.00059 RBF 0.686
300 9.63237 0.00086 RBF 0.694
400 53.74163 | 0.00025 RBF 0.699
500 8.29674 0.00088 RBF 0.703
600 4.83851 0.00085 RBF 0.705
700 3.65718 0.00064 RBF 0.708
800 3.67147 0.00057 RBF 0.710
900 4.96317 0.00049 RBF 0.713
1000 3.94264 0.00045 RBF 0.712
1100 5.53133 0.00030 RBF 0.711
1150 2.34943 0.00066 RBF 0.711
1250 4.29207 0.00029 RBF 0.712

Table 4.4: Global Fl-scores for different numbers of features and different SVM
Hyperparameters.

rediction vs Real n Jovi Save the worl
Q4
~-- Real Annotation
Q3

150
Time (secon ds)

Figure 4.10: Comparison between ground truth annotations and model predic-
tions for variable segments using standard features.
Segment Prediction

After training, the computed hyperparameters are applied to the model, which
is then used to predict the class of each fixed or variable segment. Figure 4.10
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compares the actual annotations with the model’s predictions for the variable
segments.

Q4 Q1 Q1 Q1 Q1 Q1

lKernel Update Prediction | a1 Qi Ql Q1 Q1 Q1

Apply Medi
s | o1 | o [ @

Figure 4.11: Concept of median filtering in data processing.

Post-Processing

After conducting tests, it is crucial to perform post-processing to identify and
remove potential outliers. This step enhances data quality by ensuring the dataset
is accurate and representative, thus preventing misleading conclusions. It also
improves model performance by reducing noise and mitigating overfitting.

The sequence of predicted values can be noisy, especially in the 1.5-second win-
dows, so a median filter was applied to smooth the data and reduce the impact of
outliers. The median filter works by sliding a window of a specified size over the
dataset (in this case, the window size was 3), replacing each data point with the
median value from the values within the window. The illustration in the picture
4.11 depicts the functionality of the medium filter.

The alternative approach employed a specialised filter with the All-in-One seg-
ments. Due to the varying segment sizes, using a median filter was unsuitable.
Therefore, a filter was designed to evaluate the length of each segment. For seg-
ments shorter than one second, the filter checked if the anterior and posterior
segments shared the same quadrant. If they did, the filter updated the quadrant
value of the current segment to match the quadrant values of the previous and
subsequent segments. This meticulous methodology ensured seamless continu-
ity and coherence, enabling the filter to efficiently process the data while main-
taining precision and integrity. The picture 4.12 provides a visual breakdown of
how the filter functions.

Evaluation

The model’s performance was evaluated using the same metrics outlined in Sec-
tion 2.6. From all computed metrics, F1-score and the confusion matrix are pre-
sented in the next section, since both provide a comprehensive understanding of
the model’s classification abilities.
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Start_time End_time Quadrant Start_time End_time Quadrant
0.00 40.2 Q4 0.00 40.2 Q4
After filtering
40.2 40.9 Q3 > 40.2 40.9 Q4
40.9 50.4 Q4 40.9 50.4 Q4

Figure 4.12: Concept of custom filtering in data processing.

The first metric is the average F1-score, calculated for all folds, repetitions, and
quadrants. As previously discussed in Section 2.6, the Fl-score is used because
it balances precision and recall, offering a single metric that reflects both false
positives and false negatives. Standard deviation calculations for the overall F1-
score and each quadrant also help gauge the variability and consistency of the
model’s performance across different segments.

The second key metric is the percentage-based confusion matrix. This matrix pro-
vides a detailed view of the model’s classification accuracy by showing the per-
centage of correctly classified values for each combination of true and predicted
classes calculated across all folds. Similar to the Fl1-score, we compute the aver-
age percentage and the standard deviation for each cell of the confusion matrix
to evaluate the model’s reliability and the distribution of misclassifications.

4.3.3 Results and Discussion

In this section, we present and analyze the results of our experiments follow-
ing classical methodologies. We conducted the experiments using a 3-fold cross-
validation approach with 30 repetitions (30x3-fold CV) and a comprehensive eval-
uation of two distinct datasets. Tables 4.5 and 4.6 present a comprehensive sum-
mary of the results for the 30x3-fold CV experiment and the experiment using the
two datasets, respectively.

1.5 standard | All-in-One standard | 1.5 novel | All-in-One novel
Q1 68.90% 36.30% 67.80% 37.10%
Q2 62.40% 24.50% 62.90% 27.30%
Q3 24.60% 19.50% 25.40% 19.60%
Q4 51.20% 26.70% 53.90% 28.40%
Weighted Avg 55.10% 29.90% 55.90% 30.60%

Table 4.5: Fl-score obtained for the 30x3-fold CV experiment using only the 34-
song dataset per quadrant.
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1.5 standard | All-in-One standard | 1.5 novel | All-in-One novel
Q1 57.74% 56.98% 57.77% 56.25%
Q2 46.62% 50.46% 49.06% 44.65%
Q3 42.23% 48.00% 40.94% 44.24%
Q4 59.98% 54.72% 60.06% 50.00%
Weighted Avg 52.97% 53.17% 53.38% 49.55%

Table 4.6: Fl-score obtained with the static MER and MEVD dataset experiment

per quadrant.

Experiments

Confusion Matrix (in percentage)

Q|

Q2

-

-

1.5 Standard

Q1
Q2
Q3
Q4

57.65%
36.22%
3.66%
10.34%

27.60%
42.56%
3.85%
3.41%

7.38%
12.95%
46.15%
25.06%

7.38%
8.26%
46.34%
61.19%

All-in-One Standard

Q1
Q2
Q3
Q4

60.77%
30.66%
5.92%
20.58%

23.18%
48.44%
0.91%
2.98%

7.27%
14.08%
51.14%
18.14%

8.78%
6.82%
42.03%
58.30%

1.5 Novel

Q1
Q2
Q3
Q4

57.10%
34.57%
3.85%
10.17%

21.58%
43.03%
5.25%
2.22%

14.81%
16.26%
50.56%
29.03%

6.50%
6.15%
40.34%
58.58%

All-in-One Novel

Q1
Q2
Q3
Q4

65.27%
40.26%
6.50%
18.43%

17.05%
39.86%
0.91%
5.25%

7.76%
8.83%
50.93%
19.95%

9.92%
11.05%
41.66%
56.37%

Table 4.7: Confusion Matrix for the static MER and MEVD dataset experiment (in

percentage).

In our 30x3-fold CV experiment, we observed that the 1.5-second segments achieved
Fl-scores of 55.10% with standard features and 55.90% with novel features, indi-
cating that the novel features slightly outperformed the standard ones. However,
the results suggest room for improvement and that the small dataset size may
have affected the lower classification performance.

Conversely, when employing the All-in-One approach, we observed significantly
lower scores of 29.90% and 30.60% for standard and novel features, respectively.

The statistical tests confirm these observations:

1. For 1.5-second segments, the comparison between novel and standard fea-
tures showed no significant difference (p-value = 0.50061), indicating that
while novel features performed slightly better, the improvement was not

statistically significant.
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2. Similarly, for the All-in-One approach, the comparison between novel and
standard features also showed no significant difference (p-value = 0.55895).

3. However, when comparing the 1.5-second segments to the All-in-One ap-
proach, both for novel features (p-value = 7.1982 x 10~°°) and standard
features (p-value = 2.5008 x 10~°1), the differences were statistically signif-
icant. This indicates a clear difference in performance based on the segmen-
tation method used.

Interestingly, when using novel features for All-in-One segments, the top-ranked
features were mainly standard features. Only a few new features made it to the
top, justifying the small improvement from standard to novel features and sug-
gesting that most novel features do not improve the outcomes for All-in-One seg-
ments. The increased complexity of new features comes from their specificity in
capturing a single emotion. If a segment contains multiple emotions, these fea-
tures provide little to no valuable information, resulting in poorer performance.
Essentially, these features are more complex than standard ones and are effective
only when a segment has a single emotional tone. When multiple emotions are
present, the effectiveness of these new features decreases significantly.

The lower results could be attributed to the small dataset size, which may have
contributed to challenges in the classification process. Moreover, the obtained
segments may each contain multiple emotions. The absence of emotional con-
sistency within the segments makes it challenging to classify them, possibly con-
tributing to the low score achieved. Figure 4.13 illustrates the predicted and real
emotional variation for one song.

100
Time (seconds)

Figure 4.13: Comparison between the annotated and predicted emotion quad-
rants for the song "Whenever, Wherever" by Shakira using the All-in-One seg-
mentation approach.

In this particular song, there exists a segment that spans from 97 seconds to 124
seconds. According to the annotation, the segment is divided into two parts:
from 97 seconds to 100 seconds, characterized as Q1, and from 100 seconds to 124
seconds, characterized as Q4. This suggests that the segment in question may
potentially encompass multiple emotional shifts.

As for our other experiment, we trained our model using the MERGE Audio
Complete dataset and tested it on the MEVD dataset. When using 1.5-second
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segments, we saw the Fl-score increase from 52.97% to 53.17% with the addition
of new features. Furthermore, the All-in-One approach slightly improved over
the 1.5-second segments, increasing the Fl-score from 52.97% to 53.17% when
using standard features.

It is important to note that the variable windows produced by the All-in-One
segmentation method yielded better results than the fixed 1.5-second windows
for the third quadrant. This quadrant typically yields the worst results because
it is challenging for models to recognize, likely because it also takes the longest
for people to identify (1446 ms sad (Q3), [Vieillard et al., 2008]). Additionally,
the table 4.7 shows that the third quadrant is often mistaken for the fourth. This
is likely due to the low energy levels associated with both quadrants, making it
difficult for the model to distinguish between the subtle emotional differences.

However, the novel features did not perform as well as the standard features
when using the All-in-One approach, decreasing from 53.17% to 49.55%. The
decrease in performance for the All-in-One segments is attributed to the fact that
feature ranking was computed for the MERGE Audio Complete dataset, not the
MEVD dataset, causing many novel features to rank highly. As seen in the 30x3-
fold CV cross-validation experiment, the All-in-One segments performed poorly
with most novel features. These features are more intricate than standard ones
and are only adequate for segments with a single emotional tone. All-in-One
segments often contain multiple emotions, as shown in Figure 4.13, causing top
features to offer little information, resulting in poorer outcomes.

4.4 DL Approach

The upcoming section explores the application of deep learning techniques to
improve MEVD, with a particular focus on the learning capabilities of CNNs.
Drawing from the groundwork laid by [Louro et al., 2024a], this section delves
into the integration of segmentation models within the framework of music anal-
ysis, exploring the impact of segmentation tools on feature extraction from song
excerpts. It aims to assess their efficacy in enhancing music analysis outcomes
by comparing the results obtained with and without their utilization, akin to the
previous section.

4.4.1 Datasets

The dataset used to train and test the CNN model remained consistent with the
specifications in Section 4.3. However, while the original dataset consisted of
3,554 clips, each 30 seconds long, for this experiment, each of these clips was di-
vided into 1.5-second segments. This ensured that the segments used in the train-
ing and testing phases had the same length, aligning the experiment to maintain
consistent segment durations.

Given the model’s unsatisfactory performance with the MERGE Audio Complete
dataset, we suspected this might be due to its unbalanced nature. To test this
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hypothesis, we utilized the MERGE Audio Balanced dataset, described in Section
3.1, to investigate if a balanced dataset could enhance the model’s performance.
This balanced dataset was specifically chosen for training in this experiment.

4.4.2 Methodology

This methodology section proposes an approach that employs CNN-based archi-
tectures to classify segments into one of the four quadrants of Russell’s Circum-
plex model. Besides experimenting with the CNN-based architecture, a simple
Dense Neural Network (DNN) was also experimented with the optimal feature
set found in Section 4.3. Figure 4.14 gives an overview of the complete process.
The goal is to compare the standard approach using a 1.5-second window and
the All-in-One approach using the segment windows produced by the All-in-
One tool and find out if segmentation tools are beneficial and contribute to better
results.

Feature Obtain Expriments Post-
—®  Processing —=® with Different ——® Classification —@

® .
1.5 second window MEFEPEEE e Models processing ‘l

Audio Comparison of
Pre-processing Results

Feature Obtain Expriments Post-
—®  Pprocessing —® —® with Different —® Classificaton —@

Mel-spectograms rocessin
All-in-One segments P 9 Models P 9

Pre-procesing

Figure 4.14: High level overview of the methodology.

Pre-processing

This section will discuss the pre-processing steps required to obtain the features
and Mel-spectrograms needed for our CNN and DNN models, respectively.

Feature processing encompasses feature extraction, dimensionality reduction, and
feature selection, all conducted within the same workflow. These steps are sum-
marized here, as previously detailed in Section 4.3. First, feature extraction was
performed on the static 1.5-second windows and the dynamic windows gener-
ated by the All-in-One segmentation tool. After extraction, dimensionality re-
duction was applied to remove features with zero standard deviation and re-
duce multicollinearity by eliminating highly correlated features, as previously
discussed. Finally, feature selection was done using the RelieF algorithm, which
ranks and selects the most critical features for classification.

To obtain the Mel-spectrograms, the first step is processing the audio files, which
are loaded and converted into a standard WAV format. The audio files were then
normalized and downsampled to a sampling rate of 16,000 Hz. Mel-spectrograms
were generated for each audio file by transforming the audio signals into the
frequency domain. This transformation involved applying a filter bank to extract
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frequency bands and computing the spectral power’s logarithm to obtain Mel-
scale magnitudes. Padding was added to ensure uniform dimensions across all
spectrograms.

For the approach involving 1.5-second length clips, each Mel-spectrogram cap-
tured the acoustic features of a 1.5-second segment extracted from the respective
music pieces. In contrast, with the All-in-One approach, each Mel-spectrogram
represented the aggregate acoustic characteristics of entire segments within the
music compositions, such as verses, choruses, or bridges, which encapsulate dis-
tinct musical elements and structural components. However, since these seg-
ments can vary in length, and CNN requires a fixed-length input, each segment
was divided into mini-segments of 1.5 seconds. Padding was applied to ensure
consistency across all mini-segments. The last mini-segment was used when nec-
essary, guaranteeing that all inputs fed into CNN were the same length.

Overview of the Model Architectures

We conducted two primary experiments using standalone deep learning-based
architectures for MEVD. The first experiment used Mel-spectrograms, while the
second utilized pre-extracted novel features from the audio signals.

Feature Extractor
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Conv Block 2D Conv Block 2D Conv Block 2D Conv Block 2D
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Input with Residuals connections with Residuals connections with Residuals connections with Residuals connections
> 5x5 Kernel > 5x5 Kernel S 5x5 Kernel > 5x5 Kernel
16 Filters 16 Filters 16 Filters 16 Filters
Mel-Spectograms | _TUTUUeettteUeYeYee | T S e e N R
P 9 Batch Normalization Batch Normalization Batch Normalization Batch Normalization
Dropout (0.1) Dropout (0.1) Dropout (0.1) 3x2 MaxPooling 2D
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Figure 4.15: Architeture of the first CNN model.

For the first experiment, the model, as seen in Figure 4.15 includes four convolu-
tional layers followed by max pooling, batch normalization, which comprise the
feature learning portion. The classification portion includes a dropout layer, fol-
lowed by two fully connected layers. Each convolutional layer features 16 filters
with a (3, 3) kernel size and ReLU activation, while max pooling layers reduce
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spatial dimensions. Batch normalization stabilizes activations, and dropout pre-
vents overfitting.

Fully connected layers end with softmax activation for multi-class classification,
in our case outputting one of the four quadrants of Russell’s Circumplex model.
Optimization is conducted with the stochastic gradient descent optimizer which
the objective of minimizing categorical cross-entropy loss. Designed for process-
ing Mel-spectrograms.

We also experimented with a CNN and LSTM architecture, designed to better
capture time-related features. The critical modification involved configuring the
CNN layers to handle time series inputs, allowing the model to process each time
step independently. By introducing an LSTM layer after the convolutional and
pooling layers, the model became better equipped to learn temporal dependen-
cies and capture the dynamic nature of emotional variability. This LSTM layer,
whether configured as unidirectional to utilize past information or bidirectional
to leverage both past and future data, enhances the classification of sequences
based on temporal patterns.

These adjustments were intended to enable the CNN-based model to effectively
process and understand audio sequences, capturing temporal dependencies, en-
hancing feature learning, and improving performance in emotion variation de-
tection. The CNN layers independently extract features at each time step. At
the same time, the LSTM component ensures that the model comprehends the
flow and changes in emotion over time, resulting in more nuanced and accurate
predictions.

On the other hand, the model used for the second experiment was a DNN model.
Instead of learning features directly from the data, this model takes an array of
pre-extracted features (in this case, the standard plus novel features employed in
the classical approach) and feeds them into the network. In this DNN approach,
the network processes these manually extracted features, selecting the most rel-
evant ones for classification. This method allows the model to focus on feature
selection and classification rather than feature extraction. Figure 4.16 shows a
visual representation of the model.
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Figure 4.16: Architeture of the DNN model.

Upon flattening the output, a dropout layer with a 40% rate is added to prevent
overfitting further. Subsequently, the model includes a dense layer with 300 neu-
rons and ReLU activation, followed by a final dense layer with four neurons and
softmax activation to obtain quadrant probabilities.
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Training Phase

During the training phase, we optimized the model using the training dataset
and conducted hyperparameter tuning with Keras Tuner [O'Malley et al., 2019].
This process involved systematically exploring various combinations of hyper-
parameters, such as batch sizes, optimizers, and corresponding learning rates.
Each configuration was evaluated on a validation dataset, and we used Bayesian
optimization to refine the hyperparameters iteratively. This approach aimed at
maximizing accuracy based on the validation set.

To prevent overfitting, we stopped training once the model reached the accuracy
threshold. After conducting ten trials, we stored the results in a folder. The trial
that yielded the highest model performance was selected, and its corresponding
hyperparameters were retained for use in the testing phase.

Segment Prediction

As previously discussed in Section 4.3, after training, the computed hyperparam-
eters are applied to the model, which is then used to predict the class of each
fixed or variable segment. Figure 4.17 provides a comparison between the actual
annotations and the model’s predictions for the variable segments.

Prediction vs Real Annotation: Bon Jovi Save the world
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Figure 4.17: Comparison between ground truth annotations and model predic-
tions for variable segments.

Post-Processing

As mentioned in the classical approach (Section 4.3), post-processing is essen-
tial to enhance data quality by identifying and removing potential outliers. This
helps prevent misleading conclusions and improves model performance by re-
ducing noise and mitigating overfitting. In the deep learning approach, simi-
lar post-processing techniques were employed. The 1.5-second-length segments
were processed using a median filter to smooth data and reduce the impact of out-
liers, just as in the classical method. Additionally, a custom filter was applied for
the All-in-One segments with varying sizes to ensure continuity and coherence,
effectively handling segments shorter than one second by aligning them with ad-
jacent segments where appropriate. These post-processing steps were crucial in
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refining the output of the deep learning models, ensuring that the predictions
were robust and reliable.

Evaluation

The same evaluation metrics outlined in Section 4.3.2 were applied here for the
DL approach. These include the average Fl-score, which balances precision and
recall, and the percentage-based confusion matrix, as referenced earlier. These
metrics thoroughly understand the model’s performance, including its variability
and consistency across folds and quadrants.

4.4.3 Results and Discussion

In this chapter, the outcomes of the experiments are discussed and analyzed. The
research focused on using Mel-spectrograms along with additional features. Ta-
bles 4.8 and 4.12 present a detailed summary of the findings, with Table 4.8 show-
casing the analysis using Mel-spectrogram and Table 4.12 covering the results
using features.

F1-score and confusion matrix for our mel-spectogram experiments are depicted
in Table 4.8 and Table 4.9. It is possible to observe that the standard CNN model
and the LSTM model using fixed 1.5 second window achieve an F1 Score of
20.61% and 17.14%, respectively, and the standard CNN outperformed the LSTM
model. However, by examining the table, we can see that the fixed window ap-
proach significantly improves the third quadrant, with the LSTM model increas-
ing from 5.11% to 11.77%. This improvement suggests that utilizing an LSTM
model may be necessary to capture temporal context effectively, which is cru-
cial for improving results for the third quadrant, typically the most challenging
segment in MEVD.

CNN CNN LSTM
Quadrant 1.5 All-in-One 15 All-in-One
Q1 46.42% 44.19% 7.33% 0.00%
Q2 6.83% 22.17% 41.17% 39.59%
Q3 5.11% 0.00% 11.77% 3.94%
Q4 14.71% 0.00% 9.84% 1.44%
Weighted Avg | 20.61% | 18.37% | 17.14% | 10.91%

Table 4.8: Fl-score obtained in MERGE Audio Complete for the Mel-
spectrograms experiment using different models per quadrant.

One particularly concerning observation is the presence of 0.00% F1-scores in cer-
tain quadrants when using the segments generated for the All-in-One approach.
This approach divided the original segments into 1.5-second mini-segments be-
cause the training was conducted using 1.5-second Mel-spectrograms. Conse-
quently, during testing, the segments had to be broken down into these 1.5-
second mini-segments, with each one fed individually to the model. The final
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Confusion matrix (in percentage)

Experiments ot ‘ o ‘ % ‘ &
Q1 | 30.85% | 25.53% | 16.24% | 27.36%

) 0, o o
CNN 1.5 Q2 | 32.62% | 39.71% | 12.76% | 14.89%

Q3| 39.23% | 5.38% | 23.07% | 32.30%
Q4| 6.22% | 8.65% | 33.91% | 51.21%

Ql | 30.59% | 24.30% | 18.57% | 26.52%

. Q2 | 25.47% | 23.04% | 19.50% | 31.97%
CNN All-in-One Q3 | 11.18% | 78.21% | 0.00% | 10.60%
Q4 | 0.00% | 0.00% | 0.00% | 0.00%

Q1 | 61.20% | 14.65% | 5.17% | 18.96%
Q2 | 30.40% | 26.11% | 16.33% | 27.14%
Q3 | 19.15% | 3.73% | 34.57% | 42.52%
Q4| 535% | 8.92% | 30.35% | 55.35%

Q1| 0.00% | 0.00% | 0.00% | 0.00%
Q2 | 29.23% | 25.04% | 19.04% | 26.66%
Q3 | 29.37% | 22.04% | 7.82% | 40.74%
Q4 | 18.15% | 2.79% | 48.45% | 30.59%

CNN LSTM 1.5

CNN LSTM All-in-One

Table 4.9: Confusion Matrix for MERGE Audio Complete for the Mel-
spectrograms experiment using different models (in percentage).

prediction for the entire segment was then determined by taking the mode of the
predicted quadrants across the mini-segments of the segment. For example, sup-
pose the actual quadrant for a segment is Q2, but the model consistently predicts
Q3 for the mini-segments. In that case, it severely diminishes the F1 Score for that
quadrant, potentially resulting in an F1-score of 0.00%.

Another factor contributing to the poor performance could be the training ap-
proach, which, although it uses 30-second clips, divides them into 1.5-second
segments. This segmentation might limit the model’s ability to capture the songs’
broader temporal structures and emotional nuances, as each 30-second clip typ-
ically contains limited emotional variation. Additionally, the problem arises be-
cause the training was done using 30-second clips instead of full songs. This
approach prevents the model from capturing the whole emotional progression
and structural segmentation that would be present in a complete song, leading to
suboptimal generalization across different quadrants, as the model misses out on
understanding the broader emotional context within a song.

CNN 1.5 | CNN All-in-One
Q1 8.90% 42.53%
Q2 41.05% 36.20%
Q3 7.55% 0.00%
Q4 10.57% 0.00%
Weighted Avg | 17.06% 21.35%

Table 4.10: Fl-score obtained in the MERGE Audio Balanced dataset for the Mel-
spectograms experiment per quadrant.
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Due to the low results shown in Table 4.8, further experiments were conducted
with the MERGE Audio Balanced dataset shown in Figure 3.2, a balanced dataset
across the quadrants to determine if the issue was due to the unbalanced nature
of the training dataset. The F1-score and confusion matrix results for this experi-
ments are presented in Table 4.10 and Table 4.11.

Confusion Matrix (in percentage)

Experiments
’ Ql [ Q@ | Q@ | 4
Q1 | 69.09% | 26.39% | 0.69% | 3.80%
o o o o
CNN 1.5 Q2 | 30.44% | 26.02% | 16.35% | 27.17%

Q3 | 71.00% | 0.29% | 13.01% | 15.68%
Q4| 211% | 4.23% | 40.21% | 53.43%

Q1 | 30.11% | 21.15% | 21.35% | 27.37%
Q2 | 26.96% | 33.04% | 11.97% | 28.01%
Q3 | 0.00% | 0.00% | 0.00% | 0.00%
Q4 | 0.00% | 0.00% | 0.00% | 0.00%

CNN All-in-One

Table 4.11: Confusion Matrix for MERGE Audio Balanced dataset for the Mel-
spectograms experiment (in percentage).

The results in Table 4.10 reveal an increase in the F1 score when using the All-in-
One windows, compared to the experiment conducted using the MERGE Audio
Complete Dataset for training. Using variable windows, combined with training
on a balanced dataset, may help improve the results. However, further experi-
ments were not conducted due to time constraints and the high computational
cost involved.

Shifting our focus to the experiments involving features as input to DNN archi-

tectures, the F1-score and confusion matrix results are presented in Table 4.12 and
Table 4.13.

Standard Features Novel Features
Quadrant DNN 1.5 | DNN All-in-One | DNN 1.5 | DNN All-in-One
Q1 47.18% 33.40% 38.77% 36.80%
Q2 40.44% 30.49% 8.87% 9.76%
Q3 40.06% 41.95% 22.68% 23.27%
Q4 47.96% 38.55% 35.08% 42.28%
Weighted Avg | 44.52% 35.58% 27.60% 29.00%

Table 4.12: F1-scores from the features experiment using the MERGE Audio Com-
plete dataset, evaluated across each quadrant.

Interestingly, as shown in Table 4.6 using SVM with features, the DNN model
also demonstrated improved performance in the third quadrant when using the
All-in-One segments compared to the 1.5-second segments.

The DNN model with the All-in-One segments also showed better results for the
standard features, similar to what was observed in the SVM experiment.
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Confusion Matrix (in percentage)
Q1 | @@ | Q3 | o4
Q1 | 45.62% | 31.58% | 8.19% | 14.59%
Q2 | 36.15% | 37.07% | 13.15% | 13.61%
Q3 | 853% | 422% | 47.56% | 39.68%
Q4 | 13.40% | 4.37% | 34.60% | 47.61%

Ql | 45.09% | 37.12% | 4.91% | 12.86%

N Q2 | 30.42% | 42.75% | 8.77% | 18.04%
DNN All-in-One Standard | 55| 53140, | 18.699% | 20.84% | 28.31%
Q4 | 29.76% | 18.92% | 12.15% | 39.15%

Q1 | 39.60% | 32.47% | 7.12% | 20.79%
Q2 | 22.94% | 13.49% | 34.95% | 28.60%
Q3 | 26.51% | 26.91% | 17.43% | 29.13%
Q4 | 25.99% | 18.29% | 19.893% | 35.82%

Q1 | 40.30% | 41.80% | 2.13% 15.7%
Q2 | 46.56% | 42.41% | 0.00% | 11.02%
Q3 | 37.57% | 18.68% | 17.46% | 26.27%
Q4 | 13.09% | 19.00% | 30.89% | 37.00%

Experiments

DNN 1.5 Standard

DNN 1.5 Novel

DNN All-in-One Novel

Table 4.13: Confusion Matrix for the features experiment using the MERGE Au-
dio Complete dataset (in percentage).

Additionally, in the MEVD dataset, a 3-fold with 30 repetitions (30x3-fold CV)
was conducted for the DNN model, following a similar approach used for the
CNN. This was carried out to determine whether using full-length songs would
allow the DNN model to capture better and generalize emotional variations com-
pared to using the 30-second clips from the MERGE Audio Complete dataset. The
F1-score and confusion matrix results are shown in Table 4.14 and Table 4.15.

Standard Features Novel Features
Quadrant 1.5 DNN | All-in-One DNN | 1.5 DNN | All-in-One DNN

Q1 65.30% 34.81% 65.00% 24.75%
+0.100 +0.047 +0.112 +0.057

Q2 58.70% 12.48% 58.80% 43.85%
+0.146 +0.050 +0.134 +0.092

Q3 19.40% 24.12% 20.30% 2.85%
+0.097 +0.026 +0.099 +0.051

Q4 46.70% 46.01% 46.80% 21.71%
+0.089 +0.023 +0.099 +0.085

Weighted Avg | 50.80% 31.09% 51.20% 24.38%

Table 4.14: Fl-scores from the features experiment on the MEVD dataset using
30x3-fold CV, comparing standard and novel feature sets across each quadrant.

The results in Table 4.14 show that, although the 1.5-second segments achieved
a higher overall weighted Fl-score compared to the All-in-One approach, this
improvement is mainly due to the larger number of samples available in the 1.5-
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Confusion Matrix (in percentage)

Experiments
’ QT [ Q@ | Q@ | 4
Q1 | 64.61% | 18.19% | 4.44% | 12.74%
O, 0, o o
DNN 1.5 Standard Q2 | 20.37% | 64.07% | 6.30% 9.24%

Q3| 9.79% | 12.31% | 22.30% | 55.58%
Q4 | 11.70% | 9.72% | 34.38% | 44.19%

Ol | 39.74% | 34.65% | 9.76% | 15.82%

N Q2 | 34.60% | 16.09% | 13.93% | 35.37%
DNN All-in-One Standard | 55| 56990, | 28 40% | 20.88% | 21.81%
Q4 | 1957% | 12.57% | 26.41% | 41.44%

Q1 | 66.57% | 17.79% | 4.30% | 11.32%
Q2 | 2091% | 62.27% | 7.18% | 9.62%
Q3 | 10.24% | 12.33% | 22.58% | 54.83%
Q4 | 11.66% | 9.27% | 33.90% | 45.15%

Q1 | 53.74% | 7.54% | 7.88% | 30.82%
Q2 | 20.84% | 29.48% | 20.84% | 28.83%
Q3 | 30.48% | 28.13% | 6.33% | 35.03%
Q4 | 3992% | 8.79% | 19.75% | 31.52%

DNN 1.5 Novel

DNN All-in-One Novel

Table 4.15: Confusion Matrix for the features experiment on the MEVD dataset
using 30x3-fold CV (in percentage).

second segments.

Moreover, consistent with the results of the last experiment with the MERGE
Audio Complete dataset, Table 4.12, the standard features yielded better results
than the novel features in All-in-One segmentation approaches.

4.5 Hybrid Approach

The upcoming section explores using a hybrid deep learning model to improve
MEVD by combining the strengths of CNN and DNN architectures. Building
on Chapter 4.4, this hybrid model integrates CNNs to capture spatial features
from Mel-spectrograms and DNNSs to process traditional features. The goal is to
evaluate whether this combined approach enhances emotion detection in music
compared to standalone models.

Dataset

The datasets used in this section are the same as those utilized in Chapter 4.3.
Therefore, this study primarily relied on the MERGE Audio Complete dataset for
training and in the MEVD dataset for testing.
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Methodology

The methodology employed in this chapter is consistent with the approach de-
tailed in Chapter 4.4.2, except for the model architecture used.

In this chapter, a hybrid model is introduced to integrate the strengths of both
CNN and DNN architectures, providing a more comprehensive approach for
MEVD. After experimenting with two separate models, one utilizing Mel-spectrograms
with a CNN architecture and the other employing pre-extracted features with a
DNN, we adapted a third approach that combines both strengths. This hybrid
architecture, depicted in Figure 4.18, merges the CNN and DNN branches.
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Figure 4.18: Architeture of the hybrid model.

In constructing this ensemble model, the DNN portion was pre-trained sepa-
rately to identify the best-performing model. The optimal weights from this train-
ing phase were saved, and when training the entire hybrid model, these weights
were loaded, and the DNN layers were frozen. This approach ensured that the
DNN branch retained its fine-tuned parameters while the CNN branch could fur-
ther adapt and learn from the Mel-spectrogram inputs. These two branches work
together, with the final output layer combining the processed information to clas-
sify the audio sample into one of the four quadrants of Russell’s A/V model.

Since we did not have the features extracted for 1.5-second windows from the
MERGE Audio Complete dataset and extracting them would not be feasible in
terms of time, we adopted an alternative approach. We passed the features of
the 30-second excerpts to each corresponding 1.5-second window within that 30-
second clip. This method aimed to enable the model to learn both global (30-
second) and local (1.5-second) features, respectively, leveraging broader context
while focusing on finer details for more accurate classification.

Exclusively for training the CNN portion, we utilized classic data augmentation
methods, as described in Section 2.5, to increase the training data. This approach
aimed to enhance the model’s performance, as neural networks benefit from large
amounts of data.
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Results and Discussion

The Fl-score and confusion matrix results of the hybrid model evaluation are
shown in Table 4.16 and Table 4.17.

Standard Features Novel Features
Quadrant 1.5 All-in-One 1.5 All-in-One

Hybrid | Hybrid | Hybrid | Hybrid

Q1 37.35% 40.96% 31.61% 29.53%

Q2 42.13% 48.70% 32.65% 23.75%

Q3 26.70% 25.43% 17.15% 27.64%

Q4 48.51% 32.69% 53.01% 43.96%
Weighted Avg 39.86% 36.94% 35.45% 31.22%

Table 4.16: Fl-score obtained in the MERGE Audio Complete with the hybrid
model per quadrant.

Confusion Matrix (in percentage)

Experiments Ql | @ | @ | o4
Q1 | 42.95% | 24.66% | 13.50% | 18.87%
Hybrid 1.5 Standard Q2 | 40.49% | 41.13% | 11.88% | 6.48%

Q3 | 17.26% | 21.38% | 23.58% | 37.76%
Q4 | 19.78% | 12.29% | 19.78% | 48.14%

Q1 | 39.85% | 17.96% | 21.26% | 20.90%
Q2 | 23.64% | 52.38% | 12.83% | 11.13%
Q3 | 26.22% | 13.87% | 25.48% | 34.41%
Q4 | 10.41% | 20.11% | 37.99% | 31.48%

Q1 | 36.52% | 32.70% | 13.76% | 17.00%
Q2 | 47.49% | 35.21% | 9.72% | 7.56%
Q3 | 23.54% | 27.91% | 18.60% | 29.93%
Q4 | 1942% | 13.52% | 22.33% | 44.71%

Ql | 34.93% | 26.38% | 29.04% | 9.64%

. . Q2 | 26.97% | 56.47% | 6.27% | 10.27%
Hybrid All-in-One Novel Q3 | 25.43% | 22.80% | 27.54% | 24.21%
Q4 | 20.87% | 21.40% | 24.73% | 32.99%

Hybrid All-in-One Standard

Hybrid 1.5 Novel

Table 4.17: Confusion Matrix for the MERGE Audio Complete with the hybrid
model (in percentage).

The results from Table 4.16 indicate that the All-in-One segmentation did not out-
perform the 1.5-second segments. A consistent finding throughout these experi-
ments was that, for the variable windows produced by the All-in-One approach,
novel features did not improve the results compared to standard features. This
may be because many novel features rank highly, as feature ranking was based
on the MERGE Audio Complete dataset rather than the MEVD dataset. As previ-
ously stated in Section 4.3, the All-in-One segments performed worse with novel
features because these features are more complex and require a single emotional
tone. In contrast, the variable segments often contain multiple emotions.
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A 30x3-fold CV experiment was planned using the MEVD dataset for the hybrid
model. Similar to the approach used for the CNN, it was intended to divide the
All-in-One segments into 1.5-second mini-segments to maintain consistency be-
tween training and testing sets. This strategy aimed to explore whether using
the MEVD dataset, with its full-length songs, could better capture and generalize
emotional variations compared to the 30-second clips in the MERGE Audio Com-
plete dataset. The objective was to enhance model performance by exposing the
network to more comprehensive emotional shifts and patterns within the music.
However, due to time constraints, this experiment could not be conducted.

4.6 Summary

In Chapter 4, the research applies the previously discussed methodologies to a se-
ries of experiments. The chapter starts by replicating Panda and Paiva’s work on
emotion tracking using SVMs and audio features, revealing challenges in achiev-
ing comparable results despite translating the MATLAB code to Python. This
highlights the importance of ensuring research replicability across different plat-
forms to validate findings. The replication experiments, divided into three parts
using MIR Toolbox, Marsyas, and their combination, involved SVC and SVRs
for quadrant, arousal, and valence prediction, showing the necessity of tailored
hyperparameter tuning for different feature types. The chapter then evaluates
the effectiveness of DeepChorus and All-in-One segmentation tools across vari-
ous music genres as alternatives to fixed 1.5-second intervals. DeepChorus per-
formed well in Country and Hip-Hop but struggled with Latin and Electronic
due to their unconventional structures. Similarly, All-in-One showed potential in
some genres but had difficulties with complex structural elements in others.

Next, the experiments were carried out using two distinct paradigms: classi-
cal and DL. The classical approach involved using SVMs alongside the All-in-
One segmentation tool to see how traditional methods would perform when im-
proved by advanced segmentation techniques. The use of these segmentation
tools showed an improvement in the results. For example, experiments using
standard features (as shown in Table 4.6) showed improved performance, partic-
ularly in the second and third quadrants.

The classical experiments revealed valuable model performance insights across
different datasets and segmentation approaches. The 30x3-fold CV showed that
novel features slightly outperformed standard ones with 1.5-second segments,
though small dataset size likely hindered overall classification. While the All-in-
One tool offered dynamic segment lengths, it struggled with novel features due
to their complexity and multiple emotions within segments.

The static MERGE Audio Complete and MEVD dataset experiments highlighted
the benefits of dynamic segment lengths for capturing nuanced emotions, par-
ticularly in the challenging second and third quadrants. However, the expected
improvement from novel features did not materialize, emphasizing the need for
more tailored feature ranking. These findings underscore the crucial role of dataset
size and emotional consistency in achieving higher classification accuracy, with
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the effectiveness of novel features depending on the data and segmentation ap-
proach used.

In contrast, the DL approach involved experimenting with various models, in-
cluding a DNN, CNNs, a CNN combined with an LSTM layer, and a hybrid
model that combines the CNN and DNN across different segmentation strate-
gies.

When experimenting with Mel-spectrograms, as shown in Table 4.8, adding an
LSTM layer to the CNN model improved performance in the third quadrant,
which usually yields the worst results. This suggests that the LSTM layer, de-
signed to capture temporal context, is beneficial for handling these more intricate
emotional variations. However, it may require more sophisticated tuning or a
more balanced dataset to fully realize its potential across all quadrants.

Due to the hypothesis that the unbalanced nature of the training dataset might
be affecting the results, an experiment was conducted using the MERGE Audio
Balanced dataset. Interestingly, when experimenting with the MERGE Audio Bal-
anced dataset, the Fl1-score of the All-in-One approach improved, as seen in Table
4.10, suggesting that training with a balanced dataset may help enhance results
for the variable window approach. Unfortunately, further experiments with the
MERGE Audio Balanced dataset were not conducted due to time constraints and
computational complexity.

The DNN approach, similar to the SVM results, demonstrated improved per-
formance in the third quadrant when using All-in-One segments compared to
1.5-second segments, as shown in Table 4.12. The DNN also performed better
with standard features, which was consistent with the SVM experiment. A 30x3-
fold CV was conducted on the MEVD dataset to assess whether full-length songs
would improve the model’s ability to capture emotional variations compared to
30-second clips from the MERGE Audio Complete dataset. While the 1.5-second
segments achieved a higher overall weighted Fl-score, this was primarily due to
the larger number of samples. Consistent with prior results, standard features
outperformed novel features in the All-in-One segmentation approaches, as seen
in Table 4.14.

The hybrid model, which combines the strengths of both CNN and DNN archi-
tectures, was evaluated to assess the potential of utilizing both Mel-spectrograms
and traditional handcrafted features for emotion detection. As detailed in Ta-
ble 4.16, the results demonstrated that the All-in-One segmentation tool did not
outperform the 1.5-second segment.

Additionally, standard and novel features were tested across the SVM, DNN, and
Hybrid models, with results consistently showing that standard features using
the All-in-One segmentation yielded better outcomes. This can be attributed to
the top-ranked features for All-in-One segments being mostly standard features,
while novel features did not significantly impact. A possible explanation is that
the increased complexity of novel features designed to capture specific emotions
may be less effective when segments contain multiple emotions. If the All-in-
One segments indeed encompass multiple emotional tones, novel features may
struggle to provide meaningful information, leading to poorer performance.
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As we move into Chapter 5, the final chapter of this work, we will consolidate the
insights gained from the experiments and analyses conducted in Chapter 4. This
next chapter will not only summarize the key findings but also provide a critical
evaluation of the approaches used, discussing their strengths, limitations, and
potential areas for improvement. Additionally, Chapter 5 will propose directions
for future research, emphasizing how the methodologies and tools developed in
this study can be refined and expanded to address the challenges of MEVD better.
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Conclusion and Future Work

This chapter summarizes the main contributions of this work, and proposes pos-
sible research directions for future work.

5.1 Conclusion

As this work comes to its end, the most relevant conclusions, limitations, and
main contributions are presented and discussed.

One of the primary limitations affecting the methodologies” performance is the
lack of emotionally relevant features that can be robustly generalised across dif-
ferent musical pieces. This issue is particularly challenging for the classical ap-
proach, where predefined features often fail to capture the diverse emotional nu-
ances in music.

The most significant constraint for the deep learning approach is the need for
larger amounts and better quality data to fully exploit these models’ potential. As
[Louro et al., 2024a] noted, the effectiveness of deep learning in MER is severely
hampered by the lack of large, high-quality datasets, which are essential for these
models to learn and generalise effectively.

Although the results were lower than expected, the All-in-One tool demonstrates
potential, mainly when experimenting with a balanced dataset. The results showed
performance improvement, suggesting that training with balanced data could
bring out additional insights and patterns that needed to be fully highlighted in
this study. This indicates that further exploration with balanced datasets could
uncover more refined emotional variations and improve the overall effectiveness
of the approach.

However, with further refinement, these tools hold significant promise for ad-
vancing the current state-of-the-art results in the MEVD field. Enhancements
such as more effective feature selection, improved handling of variable window
sizes, and deeper exploration of balanced datasets could significantly boost model
accuracy and robustness. By addressing the challenges identified in this study—such
as handling complex emotional segments and improving the distinction between
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similar emotional quadrants—these tools can significantly improve emotion de-
tection and classification in music, contributing to more accurate and nuanced
models in the field.

Finally, the experiment that yielded the best results with the All-in-One seg-
mentation approach was the hybrid architecture, which combines both features
and mel-spectrograms. This suggests that future experiments should further
utilise this architecture to explore its potential. By leveraging the complemen-
tary strengths of features and Mel-spectrograms, the hybrid approach offers a
promising path forward, and refining this model could lead to even more signifi-
cant improvements in emotion recognition and segmentation accuracy within the
MEVD field.

5.2 Future Work

For future work, several promising directions remain open for exploration. A
summary of these potential avenues is presented below:

* Apply the Classic and DL approaches to the CAL500Exp dataset, as this
dataset may provide additional insights and potentially address some of the
limitations encountered with smaller datasets.

¢ Investigate Audio Large Language Models (LLMs) and embeddings to
enhance feature extraction and improve emotion recognition in music by
leveraging advanced techniques in natural language processing and audio
analysis.

* Explore transformer architectures, which support dynamic input sizes, en-
abling the use of All-in-One segmentation outputs without the need for
padding to achieve uniform segment lengths, thereby taking full advantage
of the structural segmentation to detect emotion variation.

¢ Conduct experiments using the MERGE Audio Balanced dataset, as this
dataset offers an even distribution across emotional quadrants. This will
allow for a more balanced and fair evaluation of the model’s performance,
potentially improving results by mitigating the impact of dataset imbalance
observed in previous experiments.

* Conduct future experiments using the hybrid model, as this approach
demonstrated the best results for variable window sizes in previous tests.
Exploring further refinements and adjustments to this architecture could
lead to significant improvements in emotion recognition.

¢ Improve the All-in-One segmentation tool, by refining its ability to capture
and represent complex emotional shifts within music. Enhancing the tool’s
segmentation accuracy could address the limitations observed in this study
and lead to better performance in Music Emotion Recognition systems.
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1st Semester

Real

Expected

State of the Art Review

October December

Important Concepts - Existing Emotional Models and Existing

111
Databases for MEVD
MEVD methods
1.1.2
Structural analysis
1.1.3
Feature engineering for MEVD
114
1.2 Initial Experiments
Experimentation with window-based MEVD (classical and DL
1.2.1 |approach)
Experimentation with all-in-one metric and functional structure
1.2.2 |analysis
13 Dataset analysis
1.4 1st Semester Report
141 Assemble document

Figure A.1: Estimated and real effort for the first semester.
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2st Semester

Real

Expected

D

211 |Continuation with window-based MEVD classical approach
212 |Continuation with window-based MEVD DL approach

2.1.3 |Continuation with structural-based MEVD classical approach
2.1.4 |Continuation with structural-based MEVD DL approach
2.1.5 |Hybrid DL for MEVD approach

2.1.6 |Experimentation with CallS00Exp dataset

33 |Final Report
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Figure A.2: Estimated and real effort for the second semester.
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