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1. Introduction 

 “Music heals everything.” 

        Hermeto Pascoal 

 

1.1. Motivation and scope 

Nowadays, music is everywhere. From small television commercials, music videos and 

shopping centers to the more traditional music sell (albums, both on physical or digital 

format, and tickets), radio play or live events (concerts, gigs, festivals, etc), we cannot 

help consider now it as an industry. This can be explained through economical reasons 

but also through emotional ones: why some concerts get sold out in just a few minutes1, 

even when the tickets price is high?1 Why are there true fan communities online which 

create means to bring some of their most beloved artists to their countries or cities 

(petitions, organizing gigs/concerts, etc)2? And why big part of humanitarian and 

charity events are based in (or incorporate) music (e.g., Live 8)?3 Certainly not only 

because of temporary fashions or trends. Even some of the most popular social 

networks on the web are music-oriented: MySpace4 (with more than 110 million active 

users5) and Last.fm6 (with more than 30 million users7). People need to relate to the 

way they feel (or want to feel), and music is one of the most utilized means to achieve it. 

This is done not only by relating to the instrumental part of the songs, but in the case of 

the existence of voice, the analysis of the lyrical content. 

 These are only some points that relate music to mood and emotions. Later it will 

be defined and discussed in what the concepts of emotion and mood resemble, differ 

and relate to each other. 

 In this context, it is easy to understand that mood analysis has gained increased 

notoriety in the last few years, with increasing popularity coming from research in the 

Music Information Retrieval (MIR) field in the last decade (where the Music Emotion 

Retrieval (MER) area emerged). One of the most important achievements in this area 

                                                           
1 http://entertainment.timesonline.co.uk/tol/arts_and_entertainment/music/article2848485.ece 
2 http://www.lugarcomum.pt/ 
3 http://www.live8live.com/ 
4 http://www.myspace.com/ 
5 http://www.web-strategist.com/blog/2008/01/09/social-network-stats-facebook-myspace-reunion-jan-2008/ 
6 http://www.last.fm/ 
7 http://blog.last.fm/2009/03/24/lastfm-radio-announcement 
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was the inclusion, since 2007, of a Music Mood Classification evaluation contest in the 

3rd Music Information Retrieval Evaluation eXchange (MIREX)8, a part of the 8th 

International Conference on Music Information Retrieval (ISMIR) (ISMIR 2007)9. 

ISMIR is the most important conference dedicated to MIR in the world. 

 Possible MIR applications include automatic music recognition, automatic 

cataloging of musical pieces and automatic generation of music playlists based in a 

similarity criterion (mood, style, etc). The term “automatic” is used explicitly to 

underline the fact that these playlists and cataloging are produced based entirely on the 

extraction and analysis of songs features, without the use of any kind of descriptive text 

tags (typical ones are artist, album, genre, etc.). 

 In the more specific context of this thesis (mood analysis), the applications can 

be extended to the generation of music playlists based in certain moods, without 

bothering the user with the task of browsing his personal musical collection (which can 

easily reach (dozens of) thousands of songs) to manually choose the songs. This will 

simultaneously be both more comfortable and time sparing to the user. For instance, if 

the user wants music to play while he is jogging or doing sports (imagining the 

application is being used in a portable music player) he may want to hear some joyful, 

“happy” songs, beat-driven and/or with rhythm. On the other hand, if someone is 

driving he may want to be presented with some quiet, relaxing music. The same would 

apply to a stressful situation, where the user just wants to sit and calm down, or a 

psychological treatment. Even a shop owner or a DJ could benefit from this type of 

application, by automatically selecting cheerful music to serve as his store’s background 

music or selecting music based on the mood of the venue he is playing in (excitement 

for a club where rock tunes are played traditionally, for instance), respectively. Finally, 

another possible daily situation where this type of software could be applied in a useful 

way is the selection of music for a party, where the user could choose the input mood 

based on the theme (or even dress code) of it. 

 

1.2. Objectives and approaches 

The main objective of this thesis is, as the title suggests, the design and implementation 

of an application that provides the user with an automatically generated playlist of 

                                                           
8 http://www.music-ir.org/mirex2007/index.php/Audio_Music_Mood_Classification 
9 http://ismir2007.ismir.net/ 
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songs based on the mood of a song specified by the user and given as input. In another 

perspective, it can be used to generate a playlist to complement the mood of the user – 

e.g., the user introduces that his mood is anxious, it will be expected that the playlist 

will include some relaxing music. The song given as input will be an existing song in the 

application’s database (through a query). The selection would be done based on a 

database consisting of several music files/musical pieces. The pieces that would fit the 

mood specified by the user (or the pieces that would complement the specified mood) 

would be added to the final playlist presented to it. The user would then be presented 

with several options to customize these operations. Details about how this will be done 

are referred to and discussed later in this document. 

The approach carried out on this thesis involves two aspects: it is both an 

engineering and a research problem. It is a typical engineering problem in what 

concerns both to the paradigm (a client-server application, with a backoffice for 

database/application management) and to the software development process used – in 

this case, the waterfall process, with the typical phases associated to it: requirements 

specification, design, implementation, model validation and testing/debugging. The 

investigation started with the bibliographic search that was made and that will be 

detailed later on this report. The research also focused on the choice of the framework 

to be used to extract features from songs. From the three frameworks analyzed 

(jAudio10, Music Analysis, Retrieval and Synthesis for Audio Signals (MARSYAS)11 and 

MIRtoolbox12, a toolbox for MATLAB), the one that proved to be faster was MARSYAS 

(performance results in the MIREX 2008 context prove it)13, since it is implemented in 

highly optimized C++ code. It is also important to underline that although both 

MARSYAS and jAudio are open source, the latter one, as the name suggests, is 

implemented in Java, which must certainly be the main factor for not being as fast as 

MARSYAS. On the other hand, MIRtoolbox uses MATLAB, which is also partially 

implemented in Java, making it heavy in what concerns to computational requirements 

and also much slower than MARSYAS. Also, from the three frameworks compared, only 

MATLAB is not open source. So, MARSYAS was naturally chosen as the framework to 

be used within this project. Since it is open source, it is possible to add other 

functionalities to the application in the future (for instance, new features to extract, 

new classifiers, etc). The application also has a Graphical User Interface (GUI), which 

                                                           
10 http://jaudio.sourceforge.net/ 
11 http://marsyas.info/ 
12 https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox 
13 http://www.music-

ir.org/mirex/2008/index.php/Audio_Music_Mood_Classification_Results#MIREX_2008_Audio_Mood_Classification_Run_Times 
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was implemented in Qt14 (a fast and open source application for creating interfaces). 

This decision was basically based on the fact that Qt is a cross-platform application and 

UI framework. Also, MARSYAS is natively prepared for seamless integration with Qt. 

In this work, we follow a classification-based song similarity analysis. A 

classifier is first trained and then song similarity is calculated based on the distance 

between songs in Thayer’s arousal-valence plane. Here, Support Vector Machines 

(SVM) are employed. Moreover, an extensive research of the features available in the 

three frameworks analyzed was conducted. This research is presented later in the 

document. As mentioned, the emotional model to be used is the Thayer model, which 

will also be discussed in detail later. 

In what concerns to the GUI, the application presents the user with a graphical 

representation of the Thayer’s model, where songs are represented as dots in the 

arousal / valence plane, and each of the four quadrants has an appropriated color (e.g. 

blue for depression and green for contentment, with a color gradient inside each 

quadrant). Also, for the creation of the playlist, a playlist path in the Thayer’s plane is 

drawn by the user, from which songs are obtained. 

The application that is the subject of this thesis was co-developed with a 

colleague, Renato Panda. The core of the application is similar, although Renato’s 

thesis is focused on automatic mood tracking in audio music (mood change analysis 

during one song), opposed to this thesis theme (automatic playlist generation via music 

mood analysis). The main core of the application was developed in team work, while 

the functionalities related to playlist generation were the subject of this thesis and 

functionalities related to mood tracking were implemented by Renato. 

 

1.3. Planning 

The planning and schedule of this thesis is now presented. It suffered some changes, 

basically due to the inclusion of new elements on the project and to the update on the 

application requirements (the project grew in dimension over time). It is important to 

notice that the time that was initially planned for the state of the art document revealed 

short, since the bibliographic research and reading proved to be more time consuming. 

Also, some delay was introduced due to software experimentation (more specifically 

                                                           
14 http://qt.nokia.com/ 
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MARSYAS) – although its open source nature, documentation is almost inexistent 

(some manuals exist, but they are still incomplete). So, on the final planning Gantt 

diagram some of the phases of the project became overlapped in some degree. 

 The second part (semester) consisted mainly in the application implementation, 

evaluation and testing. Also, some evaluation tests were performed, in what concerns to 

classification accuracy and playlist generation.  

The initial planning and the current one are now presented below (Figure 1 and 

Figure 2, respectively) as Gantt diagrams: 
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Figure 1: Initial planning Gantt diagram 
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Figure 2: Final Gantt diagram 
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2. Mood-based playlist generation in audio music: 

context and overview 

 

2.1. Mood and emotion 

Although at first glance mood and emotion can be easily confused, the two concepts are 

considered to be different. As a subjective theme, everyone knows what an emotion is, 

but rarely one can define it. Since then, psychologists have made several attempts to 

achieve definitions of emotion and mood and a reliable model of human emotion in the 

mind. 

 In the MSc thesis “A Mood-Based Music Classification and Exploration System” 

by Meyers (Meyers, 2007), emotion is defined as: 

“Emotion is a complex set of interactions among subjective and objective 

factors, mediated by neural/hormonal systems, which can (a) give rise to 

affective experiences such as feelings of arousal, pleasure/displeasure; (b) 

generate cognitive processes such as perceptually relevant effects, appraisals, 

labeling processes; (c) activate widespread physiological adjustments to the 

arousing conditions; and (d) lead to behavior that is often, but not always, 

expressive, goal-oriented, and adaptive.” 

 In the same thesis, mood is interpreted as something more specific, shorter 

emotional state and that can be (indirectly) influenced by the surroundings, the 

“environment” around the individual, so to speak. It can be attributed to a particular 

stimulus and usually has a prolonged effect. 

 

2.1.1. Mood taxonomies 

Among the several papers addressed in the last paragraphs, many distinct mood 

categories and taxonomies where proposed. One typical and common problem in this 

area is the existence of dozens (even hundreds or thousands) of different words or 

terms to describe moods, most them describing somewhat similar and redundant ones. 

Usually these words are adjectives, but there is the need of normalizing the terms used, 

since there is not a standard mood taxonomy. Mood taxonomies can be grouped in two 

main approaches: categorical and dimensional. 
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The first one (the categorical approach), consists of several different classes of 

emotional states (e. g., Hevner model). On the other hand, dimensional models maps 

emotional states along several axes (e.g. Thayer and Tellegen-Watson-Clark models). 

Categorical models can be classified further into discrete or continuous, since emotions 

inside a quadrant (in the case of a bi-dimensional model, with 2 axes) can still be 

ambiguous (happiness, excitement or pleasure, for instance, are different in nature, but 

all mapped to the high arousal and high valence quadrant). More precisely, discrete 

models are category-like in nature (as described before), while continuous models view 

the emotion plane as a continuous space and recognize each point as an emotional 

state. This way, the aforementioned ambiguity is solved. However, arousal and valence 

are not always independent. 

In some cases the same model can be interpreted as discrete or continuous, 

depending on the way it was implemented (e. g., Thayer’s model). 

Some of the most common models are now presented: Hevner, Thayer and 

Tellegen-Watson-Clark. 

 

Hevner model 

One of the first approaches to present an affective model was made by Kate Hevner, 

circa 1936. Hevner mapped a group of 67 adjectives divided into eight different 

emotional categories (each one containing from 6 to 11 adjectives), which were mapped 

into a circular model. The main emotions in each emotional category are dignified, sad, 

dreamy, serene, graceful, happy, exciting and vigorous (from group 1 to 8, respectively) 

(Meyers, 2007). The categorical model is represented in Figure 3: 
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Figure 3: Hevner's circular model (Meyers, 2007) 

 

 Hevner also made pioneering studies that tried to relate emotions and moods 

(the ones represented in her circular model) to music – six musical features (mode, 

tempo, pitch, rhythm, harmony and melody) were studied, with main conclusion that 

music and emotions were indeed connected and that music clearly carries an emotional 

meaning (Laar, 2005). 

 

Thayer’s model 

A popular and more recent approach is based on the simple Robert Thayer’s Model ( 

(Meyers, 2007), (Lu, Liu, & Zhang, 2006), (Laar, 2005)), a dimensional model where a 

musical piece can be classified in one of four categories mapped into a four-quadrant, 

bi-dimensional space, as seen in Figure 4, below: 
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Figure 4: Thayer's dimensional model (Lu, Liu, & Zhang, 2006) 

 

This approach has its advantages, since although simple it relates two different 

dimensions effectively, and so each category could be the result of some combination of 

the valence and arousal components. In the horizontal axis (valence) the quantity of 

stress is measured, while the vertical axis (arousal) denotes the quantity of energy. 

Although the model consists of four basic moods, the relation between the two amounts 

(coordinates in each axis) can determine an exact position in the model, which then can 

be represented by a point (x, y). 

 

 Tellegen-Watson-Clark model 

In 1999, the Tellegen-Watson-Clark model was proposed. This is a more complex 

model, as it can be seen in Figure 5. It contains a lot more moods and emotions than 

Thayer’s circular model. The idea behind this dimensional model is to relate 

positive/negative affective rate as one dimension and pleasantness/unpleasantness 

versus engagement/disengagement (which are 45º rotated) as another. This is more 

understandable looking at Figure 5, where the model is represented: 
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Figure 5: Tellegen-Watson-Clark mood model (Laar, 2005) 

 

 These were the most representative and popular models that were found in the 

bibliography. Other works include Russell, Rigg and Watson (Meyers, 2007).  

 

2.2. Mood analysis in MIR research 

The present work has as its main goal, as the title suggests, the ability to automatically 

generate a music playlist according to the mood specified by the user (or, in another 

perspective, it can be used to generate a playlist to complement the mood of the user – 

e.g., the user introduces that his mood is anxious, it will be expected that the playlist 

will include some relaxing music). This selection would be done based on a database 

consisting of several music files/musical pieces. The pieces that would fit the mood 

specified by the user (or the pieces that would complement the specified mood) would 

be added to the final playlist presented to the user. 
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 In particular, this section will analyze the state of art in what concerns to MIR 

platforms, software tools, feature identification, similarity analysis, playlist creation 

and algorithm evaluation methods, comparing results and presenting features.  

 

2.2.1. Research in the area 

Although this project operates in a relatively recent field, where the investigation 

record is still small, there are already some interesting papers and results regarding this 

subject. The following paragraphs will analyze current investigation in what concerns to 

mood analysis, similarity and playlist generation, three key concepts in this project. 

 

Mood 

As written before, this area, although recent, has already produced new, fresh 

information. Much is to be found, but also much has already been achieved by now. 

Some of the papers that inspire this thesis are mentioned in the next paragraphs in 

what concerns to the mood categories, features and classification used.  The results 

presented in these papers are also discussed. 

One of them is "Automatic Mood Detection and Tracking of Music Audio 

Signals" (Lu, Liu, & Zhang, 2006). It proposes music mood classification with four 

main clusters: anxious/frantic, depression, contentment and exuberance (based on 

Thayer’s model of mood). In what concerns to features extraction, it proposes the use of 

three different feature sets: intensity, timbre and rhythm. The paper experiments with 

two different frameworks for mood detection: hierarchical and non-hierarchical. In 

both cases, it is used a GMM along with training data. The results presented showed 

better results for the hierarchical framework. 

Another paper (Laar, 2005) discusses and collects information from different 

papers, regarding different aspects from mood detection in musical pieces. Regarding 

to mood categories, they range from the four proposed in the paper above to more 

complex systems (positive/negative affect as one dimension and the 

pleasantness/unpleasantness versus engagement/disengagement as the other). 

Another algorithm categorized the songs in two classes (Hostility, Sadness, Guilt and 
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Love, Excitement, Pride). The paper addresses timbral texture features (centroid, roll 

off, spectral flux, zero crossings and average silence ratio), tonality coefficient, spectral 

crest factor, Mel Frequency Cesptral Coefficients (MFCC), Daubechies Wavelet 

Coefficient Histogram (DWCH), beat and tempo detection, genre information, lyrics, 

pitch content features, Beats per Minute (BPM) detection and Sum of Absolute Values 

of the Normalized Fast Fourier Transform (FFT). Classification methods include the 

use of a neural network with three layers, a GMM (as explained above). The results 

achieved here showed that there is not “an absolute winner”, ranging from medium to 

high precision, depending on the relation between granularity (number of categories) 

and diversity of the music database. 

The paper “A Regression Approach to Music Emotion Recognition ”, by Yang et 

al. (Yang, Lin, Su, & Chen, 2006) addresses mood categories with the innovation of 

introducing coordinates in the Thayer's model (arousal and valence axis), making it 

from a continuous perspective. The features extracted were divided into 2 feature sets, 

one with 114 and another one with a selection of 15 of them. In what concerns to 

classification, it is addressed in a representative way, and so the system trains 3 

different regression algorithms to directly predict arousal and valence values (a, v): 

multiple linear regression (MLR), support vector regression (SVR) and AdaBoost.RT 

(BoostR). The results presented in this paper are based in the R2 statistics, where the 

best combination of data and feature space reaches 58.3% for arousal and 28.1% for 

valence. 

Finally, in the MSc thesis “A Mood-Based Music Classification and Exploration 

System” by Meyers (Meyers, 2007), the objective was to analyze not only mood on 

audio signal of musical pieces but also add mood analysis of the song’s lyrics. The 

output would be a playlist featuring music with similar mood. The author opted to 

implement categories based on Russell’s circumplex model of emotion. Features were 

extracted in conjunction with Hevner’s original mapping of musical features to an 

emotional space, with slight differences (4 of the 6 features were used – mode, tempo, 

rhythm and harmony were used, melody and pitch were discarded), plus loudness. 

Music classification is performed in two steps: a preliminary classification of the song 

database is made through a decision tree and then it is used the k-NN classifier. The 

results achieved were reasonable, although the author did not revealed classification 

statistics: instead, some information about the classification of the music database, 

lyrics classification, classification vs. music classification experts, classification vs. 

social tagging services and user evaluation was provided. 
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Similarity 

In what concerns to similarity (basically, the computation of audio and web-based 

music similarity), two main documents were approached. They are summarized in the 

next paragraphs. 

The tutorial “Music Similarity”, by Elias Pampalk (Pampalk, 2005), refers that 

music similarity is not only subjective but also context-dependent, with important 

dimensions such as instrumentation, timbre, melody, harmony, rhythm, tempo, mood, 

lyrics and social background. The basic schema for this evaluation between two songs 

consists in the input given – the representation of the song (e. g. Pulse Code 

Modulation (PCM)), where feature extraction is made. Then the distances between the 

two songs are computed and compared, using a specified metric (typically Euclidean 

distance). The tutorial refers experimentation with different features: Zero Crossing 

Rate (ZCR), MFCC, spectral similarity, fluctuation patterns, chroma complexity and 

harmony (higher level). The author also points out limitations – or how 100% accuracy 

is impossible to achieve, because even human experts do not agree always, and some of 

the aspects pointed out in the article are almost or totally impossible to extract, like 

sociocultural background, lyrics, mood. It is also pointed out that maybe a perfect 

similarity measure for applications, at least, is not desirable. 

Another paper is “Music Similarity Measures: What’s The Use?”, by Autocourier 

et al. (Aucouturier & Pachet, 2002), which proposes a timbral similarity measure 

(applied to a whole song), based on a Gaussian model of cepstral coefficients (basically, 

using MFCC modeled with GMM). The application folds in two parts: a timbre 

extractor (an algorithm that creates a representation of the timbre of a song) and a 

descriptor, which outputs the proposed timbral similarity measure. The 

aforementioned timbral measure between two songs can be obtained in two ways: 

likelihood (matching the probability that the MFCCs of the first song can be generated 

by the model of the second one, using GMM) or sampling (in the case of not being 

possible to access the MFCCs of a song while computing the distance, sampling of both 

GMMs are compared, applying the first method – likelihood – to the mentioned 

models; Consequently, this method is much more efficient memory-wise). Conducted 

benchmarking experimentations included the comparison between duplicated songs, 

songs from the same artist or genre. Then, for each song in the database its timbral 

distances to all the other songs were computed, comparing these results to textual data 
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(the genre of the titles). These results revealed very poor, and that led to a subjective 

test, where users were presented with a target song S and 2 songs, A (more closer to S) 

and B (more distant), and had to order the songs in what concerns to distance to S. The 

test was performed resorting to ten users and the results showed that about 80% of the 

songs were well ordered by the application. 

 

Playlist generation 

Having in mind that the application to be developed is going to not only classify a 

chosen song in what concerns to its mood, but also generate a playlist of songs with 

similar mood, it was crucial to do some investigation on this subject. 

 In “PATS: Realization and User Evaluation of an Automatic Playlist Generator” 

(Pauws & Eggen, 2002), it was proposed a system called Personalized Automatic Task 

Selection (PATS) to generate music playlists satisfying a specified context of use (the 

real-world environment in which the music is heard). The application creates playlists 

through a dynamic clustering method, grouping songs based on their attribute 

similarity. The attribute values are weighted according to their importance to the 

specified context-of-use. These weights are achieved with an inductive learning 

algorithm, based on the input given by the user, as feedback. The quality of the 

generated playlists was evaluated in a controlled user experiment were two different 

contexts of use were proposed. The results were compared to random generated 

playlists. The aforementioned playlist quality was measured not only by precision 

(songs that suit the given context-of-use) but also by coverage (songs that suit the 

context-of-use but that were not already in previous playlists) and by a rating system. 

In all these three measures, results revealed that PATS was able to generate not only 

playlists with more music that suits the given context-of-use (precision), but also more 

diversified (coverage) and higher rated than random assembled playlists. Although the 

attributes used were basically tags (which are not to be used at all in this application) 

and requires some user feedback (which is not foreseen to be used in the application 

subject of this thesis, although that option is not totally closed), the approach to give 

different weights to the attributes of a song (in the context of this thesis work, the 

extracted musical features) looks interesting, and can be of great value to this work. 

 The MSc thesis “Local Search for Automatic Playlist Generation” (Vossen, 

2005), also addresses playlist generation based on similarity comparison between 
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songs, in which song attributes (tags) are also used. However, as the name of the 

project thesis suggests, the playlist generation is automatic, with little feedback from 

the users, which makes it of higher relevance for this project (in the case of PATS 

(Pauws & Eggen, 2002), the user could indicate which songs did not fit the context of 

use – in this case the user can only specify constraints to generate the playlist and 

adjust them till the output fits the users desires). Also, the introduction of restrictions 

by the user in the generation of the desired playlist is the bigger improvement in this 

work, making it apparently much more complex than the one presented in (Pauws & 

Eggen, 2002). These restrictions are translated into the Automatic Playlist Generation 

(APG) algorithm as constraints, which can be of three types: unary, binary and global. 

Also, this work introduces a penalty function, which evaluates to what extent the 

restrictions specified by the user are violated in the playlist generated. More than this, 

the penalty function is used in conjunction with a constraint penalty function, which 

evaluates, for each constraint specified, how much the playlist violates it. Finally, a 

constraint weight function expresses the importance of each constraint in the 

development of the playlist and a constraint transformation function, which returns 

how important a constraint violation is to the generated playlist. To improve on the 

APG algorithm, a local search (LS) algorithm was used - simulated annealing (SA), 

since it has the ability to skip local optima while searching the solution space. The 

results achieved by this algorithm are very interesting, not only both in execution time 

and scalability but also in mean penalties in the playlists generated. 

 In conclusion, it is understandable that both solutions have useful concepts to 

the present work, although (Vossen, 2005) is more similar to the system that is 

intended to be achieved. 

 

2.3. Audio features 

In this section all the features addressed in the research conducted throughout three 

different feature extraction software tools (jAudio, MARSYAS and MIR toolbox) and 

some papers, which include the ones referenced in the previous part of this section, will 

be presented and explained with some detail. As mentioned before, this is an extensive 

list since it is unknown at this point which musical features are going to be used in this 

project or which ones are dispensable. 

Features were divided into four categories: intensity, pitch, rhythm and timbre. 
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2.3.1. Intensity 

 

Root Mean Square 

Root Mean Square (RMS) returns the power of a signal over a window (McKay, 2005). 

It can be computed simply by taking the root average of the square of the amplitude, 

(RMS) (Lartillot, 2008): 

 =  

 

Root Mean Square derivative 

This feature measures the window-to-window change in RMS, serving as an indication 

of change in signal power (McKay, 2005). 

 

Root Mean Square variability 

This feature outputs the standard deviation of the RMS of the last 100 windows 

(McKay, 2005). 

 

Less-than-average energy 

An assessment of the temporal distribution of energy can be obtained through the 

energy curve, in order to see if it remains constant throughout the signal, or if some 

frames are more contrastive than others. One way to estimate this consists in 

computing the low energy rate, i.e. the percentage of frames showing less-than-average 
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energy (Lartillot, 2008). Figure 6 shows the visualization of this feature (Lartillot, 

2008): 

 

Figure 6: Selected part of the energy curve sows a high value for less-than-average energy feature value 
(Lartillot, 2008) 

 

Fraction of low energy frames 

The fraction of the last 100 windows where the RMS value is less than the mean RMS of 

the last 100 windows. This can indicate how much of a signal section is quiet relative to 

the rest of the signal section (McKay, 2005). 

 

2.3.2. Pitch 

 

Pitch (F0) 

Pitch (as an audio feature) typically refers to the fundamental frequency of a 

monophonic sound signal and can be calculated using various different techniques. It is 

a subjective property of sound that can be used to order sounds from low to high and is 

typically related to the fundamental frequency (Tzanetakis, 2002). One of the methods 

employed in MARSYAS to estimate pitch uses the YIN algorithm, which is based on the 

autocorrelation method with a number of modifications that combine to prevent errors 

(de Cheveigné & Kawahara, 2002). 
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Strongest frequency via FFT Maximum 

An estimate of the strongest frequency component of a signal, in Hz, achieved via 

finding the FFT bin with the highest power (McKay, 2005). 

 

2.3.3. Rhythm 

 

Beat sum 

This feature consists in the sum of all bins in the beat histogram.  This is a good 

measure of the importance of regular beats in a signal (McKay, 2005). 

 

Rhythmic fluctuation 

One way to estimate the rhythmic content of a signal is based on spectrogram 

computation transformed by auditory modeling and then spectrum estimation in each 

band (Lartillot, 2008). The result of the three phases is illustrated in Figure 7: 

 

Figure 7: Spectrum summary showing the global repartition of rhythmic periodicities (Lartillot, 2008) 

 

Strength of strongest beat 
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This feature measures how strong the strongest beat (the strongest beat in a signal is, in 

BPM, achieved by finding the highest bin in the beat histogram) is compared to other 

potential beats (McKay, 2005). 

 

Tempo 

This feature consists in the speed (or pace) of a given musical piece - in modern music 

is indicated in BPM. Its value is estimated by detecting periodicities from the onset 

detection curve, as exemplified in Figure 8 (Lartillot, 2008): 

 

Figure 8: Tempo curve t (Lartillot, 2008) 

 

2.3.4. Timbre 

 

Attack time 

Attack time is the estimation of temporal duration for a signal to rise to its peak (e.g., in 

amplitude). One simple way of describing and compute this feature consists in 

estimating the attack phase temporal duration - see Figure 9 below (Lartillot, 2008): 
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Figure 9: Attack time example through temporal duration (Lartillot, 2008) 

 

Attack slope 

This feature can be calculated as a ratio between the magnitude difference at the 

beginning and the ending of the attack period, and the corresponding time difference 

(Figure 10) (Lartillot, 2008): 

 

Figure 10: Example of attack slope, given by arrows (Lartillot, 2008) 

 

Spectral roll off 

One way to estimate the amount of high frequency in the signal consists in finding the 

frequency such that a certain fraction of the total energy is contained below that 

frequency. This ratio is typically fixed by default to 0.85. An example of this is given in 

Figure 11 (Lartillot, 2008): 
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Figure 11: Example of spectral roll off point (Lartillot, 2008) 

 

 Its formal mathematical formula is defined as (Tzanetakis, 2002): 

 

 

High frequency energy (brightness) 

This feature is achieved by fixing this time the cut-off frequency, and measuring the 

amount of energy above that frequency. An example (1500 Hz) is shown in Figure 12: 

 

Figure 12: Example of high frequency energy (Lartillot, 2008) 

 

Mel Frequency Cepstral Coefficients 
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MFCC returns a description of the spectral shape of the sound. The computation of the 

cepstral follows the scheme present in Figure 13 (Lartillot, 2008): 

 

Figure 13: Phases of the MFCC computation (Lartillot, 2008) 

 

MFCC are perceptually motivated features that are also based on the Short-time 

Fourier Transform (STFT). After taking the log-amplitude of the magnitude spectrum, 

the FFT bins are grouped and smoothed according to the perceptually motivated Mel-

frequency scaling. Finally, in order to decorrelate the resulting feature vectors, a 

Discrete Cosine Transform (DCT) is performed. Although typically 13 coefficients are 

used for speech representation, it was found that the first five coefficients are adequate 

for music representation (Tzanetakis, 2002). 

 

Linear Prediction Reflection Coefficients 

Linear Prediction Reflection coefficients are used in speech research as an estimate of 

the speech vocal tract filter (Tzanetakis, 2002). They are also usually used in musical 

signals. 

 

Sensory dissonance 

Also known as roughness, this feature is related to the beating phenomenon whenever a 

pair of sinusoids is close in frequency. It can be estimated on the frequency ratio of 

each pair of sinusoids represented in Figure 14 (Lartillot, 2008): 
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Figure 14: A representation of roughness (Lartillot, 2008) 

 

Spectral centroid 

The spectral centroid is defined as the center of gravity of the magnitude spectrum of 

the STFT: 

 =  

Mt[n] is the magnitude of the Fourier transform at frame t and frequency bin n. 

The centroid is a measure of spectral shape and higher centroid values are related to 

“brighter” textures with more high frequencies. The spectral centroid has been shown 

by user experiments to be an important perceptual attribute in the characterization of 

musical instrument timbre (Tzanetakis, 2002). 

 

Inharmonicity 

This feature measures the amount of partials that are not multiples of the fundamental 

frequency f0 (Figure 15). 
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Figure 15: Graphical view for a given fundamental frequency f0 and its multiples (Lartillot, 2008) 

 

Spectral flux 

It is defined as the squared difference between the normalized magnitudes of 

successive spectral distributions: 

 

Nt[n], Nt-1 [n] stand for the normalized magnitude of the Fourier transform at 

the current frame t, and the previous frame t-1, respectively. This feature is a measure 

of the amount of local spectral change. It has also been shown by user experiments to 

be an important perceptual attribute in the characterization of musical instrument 

timbre (Tzanetakis, 2002). 

 

Spectral peaks variability (irregularity) 

The irregularity measures the amount of local spectral change. It corresponds to the 

standard deviation of time-averaged harmonic amplitudes from a spectral envelope, 

and it can be described by the formula: 

 

, where  stands for  and  stands for  (Paiva, 2006). 

 

Strongest frequency via spectral centroid 
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An estimate of the strongest frequency component of a signal, found via the spectral 

centroid (McKay, 2005). 

 

Zero-crossing rate 

Indicates the number of times the waveform changed sign in a window (the number of 

times the signal crosses the X-axis), it can be used as an indication of frequency as well 

as noisiness (McKay, 2005). Figure 16 exemplifies this feature (Lartillot, 2008): 

 

Figure 16: Zero crossing rate example (Lartillot, 2008) 

 

Zero-crossing derivative 

This feature can be defined as the absolute value of the window to window change in 

zero crossings.  It can also be considered an indication of change of frequency as well as 

noisiness (McKay, 2005). 

 

2.3.5. Tonality 

 

Tonal centroid 

The Tonal Centroid is a six-dimensional feature vector based on the Harmonic Network 

or Tonnetz, which is a planar representation of pitch relations where pitch classes 
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having close harmonic relations such as fifths, major/minor thirds have smaller 

Euclidean distances on the plane, represented in Figure 17 (Lee & Slaney, 2007). 

 

Figure 17: Visualization of the 6-D Tonal Space as three circles: fifths, minor thirds, and major thirds 
(from left to right) (Lee & Slaney, 2007) 

 

It can be seen in Figure 17 that numbers on the circles correspond to pitch 

classes and represent nearest neighbors in each circle. Tonal Centroid for A major triad 

(pitch class 9, 1, and 4) is shown at point A (Lee & Slaney, 2007). 

 

Harmonic change detection function 

The Harmonic Change Detection function is the flux of the tonal centroid (Lartillot, 

2008). 

 

Key (tonal center positions) 

The key feature gives a broad estimation of tonal center positions and their respective 

clarity, as seen in Figure 18 (Lartillot, 2008): 
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Figure 18: Key graphic example (Lartillot, 2008) 

 

Modality 

This feature returns the mode of a key (major or minor, for instance). 

 

2.3.6. Musical content features 

Musical content features are a set of both rhythmic and pitch content features 

introduced by George Tzanetakis (Tzanetakis, 2002). This set (and each of the 2 

subsets) is based in features extracted previously. 

 

Rhythmic content features 

This subset is based on the BH (Beat Histogram) of a song: 

 A0, A1: relative amplitude (divided by the sum of amplitudes) of the first, and 

second histogram peak; 

 RA: ratio of the amplitude of the second peak divided by the amplitude of the 

first peak; 

 P1, P2: Period of the first, second peak in BPM; 

 SUM: overall sum of the histogram (indication of beat strength); 
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Pitch content features 

The following features are computed from the Unfolded Histogram (UPH) and Folded 

Histogram (FPH) in order to represent pitch content: 

 FA0: Amplitude of maximum peak of the folded histogram. This corresponds to 

the most dominant pitch class of the song. For tonal music this peak will 

typically correspond to the tonic or dominant chord. This peak will be higher for 

songs that do not have many harmonic changes; 

 UP0: Period of the maximum peak of the unfolded histogram. This 

corresponds to the octave range of the dominant musical pitch of the song; 

 FP0: Period of the maximum peak of the folded histogram. This corresponds to 

the main pitch class of the song; 

 IPO1: Pitch interval between the two most prominent peaks of the folded 

histogram. This corresponds to the main tonal interval relation. For pieces with 

simple harmonic structure this feature will have value 1 or -1 corresponding to 

fifth or fourth interval (tonic-dominant); 

 SUM: The overall sum of the histogram. This is feature is a measure of the 

strength of the pitch detection; 

 

2.3.7. Statistical features 

Finally, it is important to underline that is possible to extract statistical information 

(typically first and second order statistics: e. g. mean and standard deviation) from 

almost every single feature, as well as higher-order statistics (like skewness, kurtosis, 

etc.). 

 This is the main reason for the higher number of features presented by jAudio 

compared to other frameworks like MARSYAS (as it will be discussed later on this 

document, sections 2.6.1. jAudio and 2.6.4. Frameworks comparison), since many of 

them are statistical features obtained from basic features (again, mean and standard 

deviation, for instance). 
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2.4. Support Vector Machines 

This classifier uses a support vector algorithm that simply looks for the largest margin 

(distance) from the separating hyperplane to avoid overfitting as maximum as possible. 

The support vectors play a key role as the critical elements of the training set. If other 

training points are changed (or removed) and the training repeated, the same 

separating hyperplane would be found. All these concepts are visible in Figure 19: SVM 

example with optimal separating hyperplane Figure 19: 

 

Figure 19: SVM example with optimal separating hyperplane (Ribeiro, 2009) 

 

 The separating hyperplane can be linear or non-linear, according to the problem 

to be solved. The SVM classifier is considered a good solution in what concerns to 

classification performance achieved / execution time rate, also due to its sophisticated 

kernel functions and possibility of multiclass classification (Ribeiro, 2009). 

 

2.5. Euclidean distance in Thayer’s model 
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This distance metric was proposed in (Yang, Lin, Su, & Chen, 2006) and basically 

considers that the similarity between two songs can be reached by the Euclidean 

distance of the songs (points represented as pair of coordinates, x and y) in the Thayer’s 

model, arousal-valence plane. 

The Euclidean distance (also known as the Pythagorean metric) is the most 

common distance metric used, since it is the “ordinary” distance between two points 

that one would measure with a ruler.  

 We’ll now remember the formula that gives us the Euclidean distance between 

two points. The Euclidean distance between point p and point q is the length of the line 

segment . In Cartesian coordinates, if p = (p1, p2 , ..., pn) and q = (q1, q2, ..., qn) are two 

points in Euclidean n-space, then the distance from p to q is given by (Euclidean 

distance): 

 

 

2.6. Existent frameworks and platforms 

The most important and known platforms / frameworks available do perform feature 

extraction are now presented with more detail (jAudio, MARSYAS and MIRtoolbox). 

 

2.6.1. jAudio 

jAudio is a open source  feature extraction system that can be used both with a GUI or 

in command line mode or as a library. jAudio uses a modular plugin interface that 

avoids core code modification or recompilation when new features are added. 

One advantage of jAudio is automated “metafeature” extraction. Metafeatures 

are template-derived features that can be extracted from one or more other features. 

Examples of metafeatures implemented in jAudio include Running Mean, Running 

Standard Deviation and Derivative. 

http://en.wikipedia.org/wiki/Line_segment
http://en.wikipedia.org/wiki/Line_segment
http://en.wikipedia.org/wiki/Cartesian_coordinates
http://en.wikipedia.org/wiki/Euclidean_space
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The software includes a wide set of features (28), which can be used with 

metafeatures and aggregators to expand this number, although a great part of this 

features are statistical results calculated from other basic features (mean, standard 

deviation, etc.). However, as mentioned before, this framework (as it is written in Java) 

is slower and computationally heavy. A screenshot of the application is now presented 

in Figure 20 (jAudio): 

 

Figure 20: jAudio screenshot, modified artificially to show two menus simultaneously (jAudio) 

 

2.6.2. MARSYAS 

MARSYAS is another open source software framework for audio processing with 

specific emphasis on MIR applications, being one of the first frameworks built in the 

area. It has been designed and written by George Tzanetakis, one the most well known 

and experienced names in the field, with help from students and researchers from 

around the world. MARSYAS has been used for a variety of projects in both academia 

and industry (Marsyas). 
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 The basic goal of this framework is to provide a general, extensible and flexible 

architecture that allows easy experimentation with algorithms and provides fast 

performance that is useful in developing real time audio analysis and synthesis tools 

(Overview). 

 It is written in C++ (with several algorithms) and offers excellent classification 

times (Audio Music Mood Classification Results), as mentioned earlier. Although it 

does not come with a GUI it has base support for integration with Qt. These two 

advantages were crucial for choosing MARSYAS as the framework to be used in this 

project. 

 The main disadvantage of this framework is the fact that it apparently has less 

implemented features than the other two. Although, this flaw can be surpassed with the 

implementation of the lacking features, if necessary. 

 Finally, it is important to refer that a variety of existing building blocks that 

form the basis of most published algorithms in Computer Audition are already 

available as part of the framework and extending the framework with new 

components/building blocks is straightforward (Overview). 

 

2.6.3. MIRtoolbox 

MIRtoolbox offers an integrated set of functions written in MATLAB, dedicated to the 

extraction from audio files of musical features, with the objective of offering an 

overview of computational approaches in the MIR area. The design is based on a 

modular framework: the different algorithms are decomposed into stages, formalized 

using a minimal set of elementary mechanisms. These building blocks form the basic 

vocabulary of the toolbox, which can then be freely articulated in new original ways. 

These elementary mechanisms integrate all the different variants proposed by 

alternative approaches that users can select and parameterize. This synthetic digest of 

feature extraction tools enables a capitalization of the originality offered by all the 

alternative strategies. Additionally to the basic computational processes, the toolbox 

also includes higher-level musical feature extraction tools, whose alternative strategies, 

and their multiple combinations, can be selected by the user (Lartillot, Toiviainen, & 

Eerola, Department of Music: MIRtoolbox). 
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 Briefly, it can be said that the main advantages of this toolbox are the 

integration with MATLAB (which can mean vast documentation, community help and 

in a sort of way ease of use) and the number of features implemented. However, the 

MATLAB dependency can also be a disadvantage, mainly because despite the toolbox is 

open source, MATLAB is not, and so dependency to the application is needed. Also, like 

jAudio, MATLAB is heavily based and implemented in the Java language, which makes 

it computationally heavy and slow when it comes to extract features / classify musical 

pieces. 

 

2.6.4. Frameworks comparison 

The three mentioned frameworks are now compared in what concerns to features, 

classifiers and distance metrics. 

 

Features 

Is now time to make a framework comparison (jAudio, MARSYAS and MIR toolbox and 

some papers / documentation) in what concerns to implemented features (Table 1). 
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Feature 
Feature 

class 
jAudio MARSYAS 

MIR 

toolbox 
Others 

Fraction Of Low Energy Frames intensity √    
Less-Than-Average Energy intensity √  √  

Root Mean Square Derivative intensity √    
Root Mean Square intensity √  √  

Root Mean Square Variability intensity √    
Pitch (F0) pitch  √ √ √ 

Strongest Frequency Via FFT Maximum  pitch √    
Beat Sum rhythm √ √   

Rhythmic Fluctuation rhythm   √ √ 
Strength Of Strongest Beat rhythm √  √  

Tempo rhythm √  √ √ 
Attack Slope timbre   √  
Attack Time timbre   √  

High Frequency Energy (Brightness) timbre   √ √ 
Inharmonicity timbre   √  

Linear Prediction Reflection Coefficients timbre √ 15   
Mel-Frequency Cepstral Coefficients timbre √ √ √ √ 

Sensory Dissonance timbre   √ √ 
Spectral Centroid timbre √ √ √ √ 

Spectral Flux timbre √ √ √ √ 
Spectral Peaks Variability (Irregularity) timbre √  √ √ 

Spectral Roll Off timbre √ √ √ √ 
Strongest Frequency Via Spectral Centroid timbre √    

Zero Crossing Rate timbre √ √ √ √ 
Zero Crossing Derivative timbre √ √   

Harmonic Change Detection Function tonality   √  
Key (Tonal Center Positions) tonality   √  

Modality tonality   √  
Tonal Centroid tonality   √  

Musical Content Features -  √   
 

Table 1: List of features available in each framework (and papers) 

 

Classification methods 

Classfier jAudio MARSYAS MIR toolbox 
k-Nearest Neighbor  √ √ 

Gaussian Mixture Model  √ √ 

Support Vector Machines  √  

 

Table 2: Classification methods overview 

 

 

                                                           
15 Linear Prediction Reflection Coefficients are estimated based on Linear Prediction Cepstral Coefficients, which are supported by 
MARSYAS 
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Distance metrics 

Metric jAudio MARSYAS MIR toolbox Others 
Euclidean distance  √ √  

Manhattan distance   √  

Euclidean distance in Thayer’s model16    √ 

Membership feature vector distance17    √ 

 

Table 3: Distance metrics overview 

 

2.7 Test collection 

The musical dataset that is to be used in the application to be developed was kindly 

provided by Yi-Hsuan Yang, one of the authors of (Yang, Lin, Su, & Chen, 2006), after a 

personal request.  The dataset is the same used in the mentioned paper, and consists of 

194 musical pieces from popular japanese, chinese and western albums. Also, two 

MATLAB .m files (one with the arousal values and the other with valence values for 

each song in the dataset) were provided. 

The musical pieces have common properties: all of the 194 samples have 25 

seconds length, and were converted to a uniform format (22,050 Hz, 16 bits, and mono 

channel PCM WAV) and normalized to the same volume level. The 25 second segment 

was manually chosen to be representative of the dominant mood in the song (mostly 

the chorus part) (Yang, Lin, Su, & Chen, 2006). 

It is important to notice that this is a provisory dataset, which can be modified 

and/or expanded in the future if proved necessary. 

 

2.8. Followed approach 

In this project, several approaches were studied and considered, some of them with 

similar aspects to this application main goal of this application: an automatic playlist 

generation system, based on mood analysis of a musical database. 

                                                           
16 This distance metric was introduced in a paper but can be easily implemented 
17 To our knowledge, a new distance metric introduced in this work, also easy to develop 
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Options were made in order to achieve this, some by choice, others due to 

limitations, notably time constraints. As planned, Thayer’s mood model, based on a 

continuous arousal-valence plan, was used. 

 Also as planned, feature extraction stage was developed using the MARSYAS 

framework. Although complex, poorly documented and sometimes unstable from 

version to version, this framework proved to be fast and powerful. 

 The approach developed in this thesis outputs a “continuous” classification, 

since it maps each song with a coordinate system (x, y), with values ranging from -1 to 1 

in each axis, according to Thayer’s model, as pointed out earlier. This implied training a 

regression model, since it’s not a discrete classifier. To achieve this (and since 

MARSYAS only supports discrete classifiers), an additional classification library was 

used - libSVM18, in conjunction with MARSYAS. 

This way, after a train phase, similarity between two songs is calculated based 

on the Euclidean distance between the songs coordinates (points) in the Thayer’s 

graphic model, as specified earlier in this document. This is done during the test phase 

and then playlist generation is achieved computing the closer songs to the one used as 

query. Both annotations and predicted values for arousal and valence coordinates in 

the test set are compared to evaluate the accuracy of the generated playlists. 

                                                           
18 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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The implemented application consists of three main parts: the client, backoffice 

and server ones. The first two are more stable, since they have been being implemented 

for some time now, while the backoffice is in a alpha version, at the moment only 

allowing the user to login, logout and send a new song to the server (in order to be 

added to the database). The client application allows the user to see the songs 

distributed in the Thayer’s model, generate a playlist based on a path designed by the 

user in the graph (and export it to a M3U file) and the see each song details, which 

includes a waveform visualization and highlighted mood changes in the song using 

different colors for each one of the Thayer’s model quadrants. Finally, the server 

coordinates the communication with both the client and backoffice applications, 

performs song classification and interacts with the database and the musical dataset. 

 

3. Implementation 

In this section we present the main decisions taken throughout the development of this 

project. In what concerns to MARSYAS, this covers aspects related to feature 

extraction, data normalization, classification, playlist generation and evaluation. It also 

includes the back office part of the application, developed in Qt. 

 

3.1. Playlists 

As mentioned earlier, all the tasks related to playlist generation were developed on 

MARSYAS, the MIR framework chosen to achieve this goal. Based on the work done by 

my colleague Renato Panda in his thesis (mood tracking), some parts were improved, 

while others were developed from scratch. The following sections provide more detail 

about this. 

 

3.1.1. Feature extraction 

To achieve the main purpose of the developed application, the first step was clearly to 

extract the features of the all the songs on the dataset (the 194 songs samples annotated 
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by Yang). All the features sets provided by MARSYAS were used (13 features sets), 

without selection, which comprises 454 features in total for each song to be extracted. 

This number includes statistical features derived from the core ones (means, standard 

deviations, etc), among others: 

 Tempo 

 Stereo Panning Spectrum Features 

 Mel Frequency Cepstral Coefficients 

 Chroma 

 Spectral Flatness Measure 

 Spectral Crest Factor 

 Spectral Centroid 

 Spectral Rolloff 

 Spectral Flux 

 Line Spectral Pair 

 Linear Prediction Cepstral Coefficients 

 Zero Crossings 

 Beat 

 

Since the objective was to classify each aforementioned sample with a single AV 

(arousal/valence) pair (which would represent the value for the whole song segment), 

and consequently a unique value for each feature depicting the entire song, a single 

feature of values was used (MARSYAS provides the possibility of using other kind of 

networks, which can extract many values for a given song feature – for instance, for 

mood tracking purposes, among others). 
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3.1.2. Data normalization 

Between feature extraction and classification, classification data (i.e. feature extraction 

values) was normalized, to ensure that all values ranged between the same boundaries, 

preventing the classification results to become corrupted. 

 To achieve this, the following formula was used: 

 

, where  is the normalized value, l and u are respectively the upper and lower limits 

between which the features values will be scaled. In this case, the chosen feature 

normalization interval was [0, 1] (u=0 and l=1). 

 

3.1.3. Classification 

To properly classify the songs and estimate distances between them, both arousal and 

valence values needed to be known simultaneously. With this in mind, the initial 

method developed by my colleague Renato Panda was improved – so that the 

mentioned pair values could be predicted at the same time. Once again (as in Renato’s 

thesis), the SVM classifier was used for this, through the libSVM library, on the Yang 

dataset (as referred earlier in this report, 194 samples of songs, annotated with arousal 

and valence values). 

 It was chosen to use K-fold cross-validation, with K=4, which means that 3 folds 

were used for the training phase (75% of the dataset), while the last fold was used for 

testing (25% of the dataset). This means that each fold would have 48 or 49 songs 

(considering the 194 that comprised the whole dataset). As this cross-validation 

method implies, all the 4 folds were rotated, to ensure that all of them were used for 

both training and testing purposes. 

 The aforementioned process was repeated 50 times, which means that 200 folds 

(4 x 50) were generated. It is also important to underline that all the folds were 

randomly generated. 
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 Some statistical results can be measured by using the average predicted arousal 

and valence results from the original annotations, which are now presented in the next 

four sections. 

 

Sum-Square Error (SSE) 

Measures the total deviation of the predicted values from the original annotations, and 

is calculated by the following formula: 

 

, where  is the annotation and  is the predicted value. 

 

Total Sum of Squares (SST) 

Measures the deviation of each annotation to the mean value of the annotations, and is 

given by: 

 

, where  is the annotation and  the average of all annotation values. 

 

Root Mean Square Error (RMSE) 

Estimates the standard deviation of the predicted values, whose formula is: 
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R2 

Is a statistic value used to measure how successful the trained model is and how it fits 

our training and test data. When results are near 1 it means that the model fits the data 

perfectly. It is given by: 

 

 Overall AV classification accuracy is provided by this statistic, so that it can be 

compared with Yang et al. results. 

 

3.1.4. Playlist generation 

In this part, after all the arousal and valence values had been predicted (for all the 

songs in the test fold), for each one of these, the Euclidean distances (based on the 

arousal / valence values) to all the remaining test set songs were computed, stored and 

ordered. This way, for each song in the test fold, both a top annotation and top 

prediction list was generated, both ordered by ascending distance (which means closest 

songs first). Based on this, some metrics were estimated, which are more accurately 

discussed in the next section (3.1.5. Playlist evaluation). Figure 21 shows the playlist 

generation window in the client GUI of the application: 
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Figure 21: Playlist generation window (client application) 

 

3.1.5. Playlist evaluation 

In each test fold, every song in it is used sequentially as a query, and since it is 

guaranteed that all four folds are used as test ones, we guarantee that in every 

repetition all the songs are used as queries. 

To efficiently evaluate the quality of the generated playlists (closest predicted 

songs playlist – basically the first n elements of the top annotation list, n being the 

playlist size - in comparison with the closest annotated songs playlist – the first n 

elements of the top prediction list, n being again the playlist size), four metrics or 

measures were calculated (for each song in the test set), which are explained after Table 

4. 

 Next table (Table 4) shows an example of the top 20 annotations and top 20 

predictions (i.e. closest songs) for one of the songs present in one of the (randomly 

generated) test folds. In this case the test fold had size 49. The chosen song (query) is 

Dream Theater’s “Fatal Tragedy”: 
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# 
Top annotations 

(song name) 
Distance 

Top predictions 

(song name) 
Distance 

1 2.18 0.0482597 1.36 0.0545035 

2 
2.06.Dream_Theater.The_

Answer_Lies_Within 
0.118806 2.26 0.0658998 

3 
2.05.Dream_Theater.Pull_

Me_Under 
0.228473 2.29 0.0662149 

4 2.30 0.234094 
2.16.Alanis_Morissette.Jagged

_Little_Pill_Forgiven 
0.0733243 

5 
2.16.Alanis_Morissette.Jag

ged_Little_Pill_Forgiven 
0.236764 2.39 0.0736593 

6 2.38 0.260768 
1.10.Bon_Jovi.08_Save_the_

world 
0.084574 

7 2.45 0.269966 1.21 0.0886902 

8 
3.11.Angra.01_Deus_Le_V

olt 
0.270113 2.30 0.108635 

9 2.48.Avril.07_Tomorrow 0.292746 
4.13.Bill_Evans.My_Foolish_

Heart 
0.126201 

10 2.29 0.339988 3.10 0.126384 

11 2.39 0.348528 
3.13.Jack_Johnson.01_Better

_Together 
0.1306 

12 
2.13.alanis_morissette.so_c

alled_chaos_rns 
0.394462 2.45 0.136185 

13 2.26 0.411565 1.20 0.136735 

14 3.10 0.446781 2.38 0.140954 

15 3.17 0.44764 1.39 0.145313 

16 1.25.Aerosmith.Dont_Stop 0.499992 2.48.Avril.07_Tomorrow 0.146856 

17 1.43 0.538179 4.14.Damage.Forever 0.164022 

18 4.26 0.545388 1.17 0.170183 

19 1.38 0.560014 
2.05.Dream_Theater.Pull_Me

_Under 
0.172588 

20 4.35 0.575847 4.35 0.188898 

 

Table 4: Top 20 annotations and top predictions lists for song "Fatal Tragedy" by Dream Theater 
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First playlist song match 

This metric verifies if the first song in the closest predicted songs playlist is the same in 

the closest annotated songs playlist. For this reason, for each song, this percentage 

value can only be 0% or 100%. Just for curiosity (since obviously it doesn’t affect the 

results), the chosen playlist size for this metric was 20 songs. 

For instance, in Table 4, this metric is 0%. 

 

Percentage of playlist songs match (size 5) 

In this metric, both the closest predicted songs playlist and the closest annotated songs 

playlist with size 5 were compared, to see how many songs were common to both of 

them (the order being irrelevant). 

For instance, in Table 4, if we consider the first five songs in each top, this 

metric is 20%, since only one song matches the two tops. 

 

Percentage of playlist songs match (size 10) 

This metric is identical to the previous one, with the only difference being the playlist 

size (in this case, 10 songs). 

 For instance, in Table 4, if we consider the first ten songs in each top, this 

metric is 30%, since three songs match the two tops. 

 

Percentage of playlist songs match (size 20) 

Again, this metric is similar to the previous two, with the slight difference in playlist 

size (this time, 20 songs for comparison). 

 For instance, in Table 4, if we consider the whole table (first twenty songs in 

each top), this metric is 55%, since eleven songs match the two tops. 
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3.2. Database 

A SQL database is used by server, which stores all the information about classification 

and the songs. The server does all the operations required on the database (e.g. 

querying, update and addition of data). The use of Qt SQL libraries provides support 

for different database management systems, also supporting different engines, from a 

simple SQLite file to MySQL, PostgreSQL, Oracle or Acess DB files or any other Open 

Data Base Connectivity (ODBC) protocol. Currently, the prototype supports SQLite, 

with preliminary support for MySQL. 

 The database was planned and designed in a general and expandable way. It 

supports the current needs but also allows different mood models, including different 

types (both categorical and dimensional), user accounts, lists of artists, albums, genres, 

features and classification profiles, saving different classification and tracking values 

for the same song, based on different combinations of features and classifiers, for 

instance. Figure 22: Entity-Relationship modelFigure 22 represents the current Entity-

Relationship Model: 
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Figure 22: Entity-Relationship model 
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3.3. Client application 

The client application was developed by Luís Cardoso, a Bsc student that also makes 

part of the team, with the requirements analysis (seeAppendix A) being developed by 

Professor Rui Pedro Paiva, Renato Panda and myself, using the Qt platform. Using Qt 

guarantees that the developed application is cross-platform and usable in any of the 

platforms supported by Qt. 

 Currently, the prototype supports both playlist generation (retrieving a playlist 

based on the draw of the desired path in the Thayer’s model) and mood tracking 

features (showing the quadrant changes, highlighted in different colors in the sound 

wave graph), along with more basic features, such as playing a selected song, see its 

details or checking the distribution of the songs over the Thayer’s model. 

 

3.3.1. Main window 

As it can be seen in Figure 23, after opening the application it is necessary to insert 

both the server address and the port number, in order to connect to establish the 

necessary connections. Once this is made, the user can request the visual map of all 

songs in the database (“Get DB Map” button), each point representing a song. The user 

can pass over each point with the mouse to check each song name. Additionally, the 

user can zoom in an out in the map, draw traces (a desired playlist path, for instance) 

and click on each song. 
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Figure 23: Client application main window 

 

3.3.2. Song Details 

After selecting one song in the database map, a request for its details is made to the 

server. The information is then received and displayed on the “Song details” dialog 

(Figure 24), which displays all the ID3 tag information data available for the specified 

song, as long as the correspondent soundwave graph and mood tracking data (based on 

Renato’s work). The song can be played and a vertical black line marks the progress of 

it, with different colors representing different mood quadrants identified in the song. 
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Figure 24: Client application song details dialog 

 

3.3.3. Playlist details 

The playlist visualization purposes are satisfied after drawing the desired path in the 

main client window (Figure 25) and clicking with the mouse’s right button in it (“Get 

Playlist” button). That will present the user with a new dialog, where the generated 

playlist information is displayed (Figure 26). Now, the user can export the playlist to 

the M3U format with a simple click on a button (“Export”) or select any one of the 

songs present in the playlist, as shown in Figure 26: 
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Figure 25: Client application main window (with drawn desired playlist path) 
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Figure 26: Client application playlist details dialog 

 

3.4. Backoffice application 

The backoffice application prototype provides administration means to the 

server. It works sending requests and receiving responses from the server (similar to 

the client application). Currently, it is an alpha version and so it only supports user 

login / logout, also allowing the administrator to send new songs to the server (after 

successful authentication), in order to be added to its database. 

The communication is made through QTcpSockets, and different data blocks are 

assembled in order to make different requests to the server (login, logout, etc), which 

are made using an array of bytes (QByteArray class). The requests are then sent and 

the responses received using QDataStream objects (one for each purpose).  

When the application starts, the login window is presented (Figure 27). After 

successfully filling the server address (if left empty, it will connect to the localhost 

address), username and password, a request is sent to the server with the user data. If 

the server response confirms that both the username and the password are valid, the 

login window is closed and the main window is presented (Figure 28), where the user 
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can add a song to the database (“Choose file…” button) or logout the system (menu 

“File”->”Logout”). 

 

 

Figure 27: Backoffice application login dialog 

 

 

Figure 28: Backoffice application main window 

 

3.5. Server application 

This application was developed by my thesis colleague Renato Panda, and despite not 

having a GUI, it was also built using the Qt framework. The function of the server is to 

receive all the requests from both the client and backoffice applications and provide the 

correct responses to that requests. Also, it interacts with the database and processes 

audio files. The communication is made in a similar way as documented in the 

Backoffice application (section 3.4. Backoffice application), and threads are used to 

support multiple client connections simultaneously. 
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4. Experimental results 

In this section, some information about the Yang dataset annotations are given, while 

in section 4.2. Global results the results achieved are presented and discussed. 

 

4.1. Song annotations 

As pointed out in previous sections of this report, the song dataset used was kindly 

provided by Yi-Hsuan Yang, one of the authors of (Yang, Lin, Su, & Chen, 2006), along 

with the arousal and valence annotations values for each one of the dataset songs. This 

dataset was the one use for training and testing purposes, and consisted of 194 songs 

from several genres and provenances, spanning different arousal and valence values, 

from all four Thayer’s model quadrants. 

However, as my colleague Renato Panda pointed out in his thesis, the 

annotations values revealed that they aren’t 100% accurate and not as diverse as one 

would expect, which of course can negatively influence the final results. This will be 

addressed below. 

 

4.1.1. Proximity to Thayer’s model origin 

After mapping the dataset annotations to the Thayer’s model, it is obvious that the 

majority of the songs are close to the origin of both axes, which suggests that they don’t 

denote very marked moods (if that was the case they would be much more distant from 

the axes origin, at least the majority). This can be seen both in Figure 29 and Table 5, 

below: 
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Figure 29: Yang annotations mapped into Thayer’s model19 

 

Distance from the origin Number of songs Percentage in the dataset Sum 
[0, 0.25] 47 24.23 % 47 

]0.25, 0.5] 93 47.94 % 140 

]0.5, 0.75] 47 24.23 % 187 

]0.75, 1] 7 3.61 % 194 

 

Table 5: Yang annotations distances to the model’s origin20 

 

 As it can be seen in Table 5, nearly 25% of the songs annotations are within a 

distance of 0.25 of the center (red circumference in Figure 29), while nearly 75% of the 

dataset is at most at a distance of 0.5 from the graph’s origin (orange circumference in 

Figure 29). This means that the majority of the songs are placed near the model’s 

origin, which obviously leads to somewhat ambiguous moods. 

 

                                                           
19 Image kindly provided by Renato Panda 
20 Information kindly provided by Renato Panda 
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4.1.2. Unbalanced song distribution 

The Yang dataset aimed to achieve a balanced distribution of songs in the four 

quadrants that compose the Thayer’s Model. Since the dataset has 194 songs, this 

would mean about 48 or 49 songs for each quadrant. After analyzing the annotations 

values, it is quite evident that this differ much from the initial quadrants (expressed in 

each song filename), which results in an unbalanced dataset. 

Again, looking to Figure 29 (where each one of the four colors represents one of 

the four quadrants), it was expected to see the points with the same color (the initial 

annotation) together in the same quadrant. However, as it can be seen in Figure 29 and 

analyzed in Table 6, it is quite obvious that the songs are scattered all over the model’s 

quadrants, which makes the dataset completely unbalanced. This is another issue that 

can also lead to distorted results. 

  

Quadrant Yang Real Real (%) Matching Matching (%) 
1 48 54 27.84 % 36 75.00 % 

2 48 22 11.34 % 17 35.42 % 

3 49 51 26.29 % 16 32.65 % 

4 49 49 25.26 % 9 18.37 % 

Other 0 18 9.28 % - - 

Total 194 194 100.0 % 78 40.21 % 

 

Table 6: Songs per quadrant (Yang’s vs. real annotations)20 

 

 In Table 6, the “Yang” column shows the number of songs in each quadrant, 

according to Yang’s initial annotations, while the “Real” column shows how many songs 

were indeed in each quadrant, after the analysis of the annotated values (in this 

particular case, the “Other” row shows 18 songs where one of the values for arousal or 

valence was equal to zero, therefore not belonging to any particular quadrant). The 

“Matching” column shows how many songs were indeed correct (matching in both 

Yang’s initial annotations and the annotated values). 

 In a quick glance, it can be seen that only nearly 40 % of the songs (78 songs) 

match both annotations, and that the second quadrant actually only has 22 songs in it. 
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4.2. Global results 

The results obtained by the tests specified in section 3.1.5. Playlist evaluation are 

presented in Table 7. It is important to know that these results are the arithmetic 

means of each one of the metrics specified, based on all the measures made (9700 

songs = 50 repetitions × 4 folds × all songs on each test fold – 2 folds have always 49 

songs, while the other 2 have always 48): 

 

Metric Results (arithmetic mean) 
Playlist first song match (size 20) 4.11 % 

Percentage of playlist songs match (size 5) 19.03 % 

Percentage of playlist songs match (size 10) 35.35 % 

Percentage of playlist songs match (size 20) 58.73 % 

 

Table 7: Experimental results 

 

 From this table, it is easy to understand why the exposed metrics tests results 

grow in percentage. 

The first metric has undoubtedly a really low result, but that can be somewhat 

understand if we have in mind that it measures the average percentage of times the 

closest song in a top distance list of 48 or 49 songs is the same in the annotation and 

prediction ones. 

 The other three metrics are similar among themselves, the only variable being 

the playlist size. Since these three metrics measure the average percentage of common 

songs (therefore ignoring the order of appearance of them) between the top annotation 

and top prediction lists (with playlists sizes of 5, 10 and 20 songs), it is easy to 

understand that, the bigger the playlist size is, the most probable is to find common 

songs in the two top lists. To a playlist of size 20, in these conditions, the results are 

reasonable, with an average matching of almost 60%. 

 However, these results also predict that if the dataset (and consequently the 

fold) size is increased, these four metrics values will probably drop. The limitations that 
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helped led to his results were already pointed out and some suggestions are made 

abaixo (section 5.1. Future work). 

 

4.2.1. Classification results 

However, it is noteworthy that the fact that feature selection was not performed was 

another factor that contributed to the somewhat low results achieved. In his thesis, 

using all the features available in MARSYAS, my colleague Renato Panda concluded 

that, as previous studies pointed out, valence values are easier to predict, in comparison 

with the valence ones. His tests used R2 and RMSE statistics (see section 3.1.3. 

Classification for their definition) to verify this and indeed they revealed that the R2 

value for arousal reached 57.9% but only 3.24% for valence (Table 8). The arousal 

values are similar to the ones observed in (Yang, Lin, Su, & Chen, 2006), but in what 

concerns with the valence values, they reached 28.1% in the same paper, much more 

than the ones obtained here. This discrepancy is probably due to the fact that, in the 

aforementioned paper, several feature extraction frameworks were used, which 

provided the authors with a wider range of features, some of them not present in 

MARSYAS. This is underlined by the fact that three out of the four most important 

features pointed out by Yang in his paper are no present in MARSYAS. 

 We also conducted a pilot study with MIR Toolbox, which led to a R2 value of 

25% for valence, which confirms the absence of some meaningful features in 

MARSYAS. Another cause to this low R2 results for valence probably had to do with the 

use of the entire MARSYAS feature set. If feature selection had been made, some 

features (with uninteresting results for mood classification) would be discarded, thus 

increasing both the results (especially for valence) and the model accuracy. 

 

Arousal Valence 

SSE SST RMSE R2 SSE SST RMSE R2 
0.996816 2.34311 0.220108 0.57985 1.15312 1.1943 0.241297 0.0324472 

 

Table 8: Global classification results (using all features)21 

 

                                                           
21 Results kindly provided by Renato Panda 
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 Also, looking at the placement of the predictions on Thayer’s model it is easy to 

conclude that all songs are gathered within the 0.50 distance limit (orange 

circumference, see Figure 30) and that the valence values practically do not change (a 

very small variation almost places them all over the arousal axis). 

 

Figure 30: Global predictions in Thayer’s model (using all features)19 

 

As previously pointed out, improvements to these results can be achieved by 

adding meaningful features, such as tonality, multiplicity, spectral dissonance and 

chord, as mentioned in (Yang, Lin, Su, & Chen, 2006) (other suggestions are exposed in 

section 5.1. Future work). 
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5. Conclusions 

This project revealed to be a valuable one, consisting in a valid study, with interesting 

and credible results. Personally, the main goals and purposes of this work were 

achieved, and one hint of the relevance of these results on the MIR and MER fields is 

the possibility of writing (or, at least, to take part on) a paper about the subject. 

 Of course that there were time limits and some difficulties, the main ones being 

the complexity of the MARSYAS core code (which increased the learning curve), and its 

instability, due to constant updates that sometimes generated memory leaks in some 

versions and so, the work done is a functional prototype of the planned mood 

application and not a final version. 

Yet, the features that weren’t developed so far are well documented in both 

section 5.1 and Appendix A. This way, it is easy to understand what is already done and 

what paths can be followed. 

 It is also noteworthy all the study and knowledge gained through the planning 

and development of this project, which is well documented in this thesis report. This 

consists in a solid base and introduction to the study of the MIR and MER fields. Also, 

despite being mainly a research project, software engineering techniques were also 

used, which ensured planning and eased team work and task distribution among all the 

members of the project. 

 In conclusion, this project was undoubtedly worthy and added value to the areas 

covered. Its results are another small but important step in the research of these recent 

fields (MIR and MER), and so, more data is available to all the researchers on the 

subject. 

 

5.1. Future work 

In a research project of this kind, usually many improvements can be done, and this 

one is no exception. Mainly due to time restrictions, some of the requirements planned 

weren’t developed, although the main objectives were achieved. 

 In what concerns to MARSYAS and playlist generation, some of the 

improvements could include the use of a bigger, balanced dataset (instead of the Yang 
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one), or, in alternative, to assure that both the training and test sets of the current 

dataset are balanced, including all the folds (with an equal number of songs for each 

quadrant). However, the latter option would mean that only 22 songs from each 

quadrant would be used in total (since the annotations analysis revealed that only 22 

songs belonged to the second quadrant, the one with less number of songs). 

 Also, more metrics could be studied (which includes distance metrics, like the 

Euclidean and Manhattan distance between each songs feature vector, or a 

membership-like feature vector distance) – for instance, extract more playlist 

generation statistics by changing the number of repetitions and/or folds and comparing 

the results. Other important tool would be the use of FFS, to eventually increase the 

quality of the results obtained. FFS would possibly provide better results by choosing 

the optimal set of features (the ones that provided the best prediction results). Last, but 

not least, other classifiers (k-NN, GMM) could be used to compare results, and their 

parameters studied, compared and tuned (including the classifier used – SVM), to 

achieve better results. 

 In what concerns to the application (the client, backoffice and server), it could 

be improved to include all the options planned in the requirement analysis document 

(see Appendix A) that weren’t developed. In what concerns to the database, the one 

currently specified and implemented is prepared for generalization and includes all the 

current necessary features. 

Finally, at least the playlist generation experiments, metrics and results, could be 

documented on an article paper written on the subject. 
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Appendix A - Requirements analysis 

The following sections present with some detail the requirements analysis of the 

application that is subject to be developed (objectives, functionalities and features), 

since this is a crucial part of the design of a software application. It is also presented 

some prototype screenshots of the client GUI interface, showing part of the playlist 

generation functionalities. 

This requirement analysis was achieved through an extensive brainstorming 

involving Renato and the thesis supervisor, Professor Rui Pedro Paiva, which means 

that it is presented an extensive list of desirable features. Of course that, when hard 

work starts, some functionalities and details can change, while some of the software 

features can prove to be harder (or easier) than expected to fulfill. 

 

A.1. Requirements description 

After some discussion and brainstorming, it seems clear that there will be developed 

three applications: a client application, a server and an administration one. It is also 

required that both client and administration applications are able to run both in online 

and standalone mode (running both the client - or administration - and server 

application in the same host, and communicating via localhost). The client will be able 

to perform a query (in a variety of ways, as we will see later), while the server 

application will rely on doing the “heavy” stuff (extracting features, calculating arousal-

valence coordinates, adding/removing/editing songs in the database and selecting 

songs to form the output playlist, retrieving the information about them afterwards to 

the client application). The architecture of these applications is graphically described in 

Figure 34. Its details will be discussed in the following sections. 

 

A.1.1. Client application 

On the client side, it will be developed a GUI that can offer to the user the possibility of 

choosing a song from a music file in his computer to add to the database, or perform a 

query in it. It will be also possible to choose from a two-dimensional valence-arousal 

axis graphic (based on the Thayer’s model) – selecting a point on it, or several ones (in 
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order to choose a trajectory for the playlist to be generated), or even selecting an area in 

the graphic, which would generate a playlist (retrieved by the server) with songs within 

the selected zone (or at least, the closest possible). It must be also possible to show all 

the songs of the database in the valence-arousal graphic (again, as points). Due to the 

fact that with this option enabled the graphic can easily become crowded (especially if 

the dimension of the database is big), it can be desirable to implement a zoom tool, 

where the user could choose an area to enlarge. Other possibilities include the use of 

filters to refine search on the database (by genre, musical attributes, features – like 

tone, rhythm, etc). 

Besides all the aforementioned search mechanisms in the previous paragraph, 

the client application must also present the user with a number of configurable options, 

like the size of the generated playlist, the option to evaluate the mood of a song 

choosing what features (or categories of features) to use (or not) when retrieving the 

mood of a song. The GUI must present the features hierarchically (each one inside the 

feature category where it belongs). It must be also desirable to choose which type of 

distance will be use to compare the selected song with the rest of the database (by 

default, it is used the Euclidean distance). It will also crucial to have the possibility of 

choosing the classifier to use (SVM, k-NN, GMM, etc). It would be also desirable to 

have the option to export the playlist to a standard format (M3U22, for instance). The 

application will also have mood tracking (analysis of mood change / segmentation 

during a song) functionalities, which are more related to Renato’s work. 

It will be necessary to implement a protocol as a guideline to the 

communication between the client and server application. All the users must have a 

username and a password in order to log in into the system and communicate with the 

server (they must register in the user’s database). This way, it will be possible to track 

who is logged in the system. This communication should be encrypted (password, at 

least, as mentioned before). 

After the query done by the user, the client application must receive from the 

server the ID of the song, the valence and arousal coordinate ant the level of similarity 

with the point chosen in the in the arousal-valence axis 2D graphic, the song chosen by 

the user or mood tracking information of a song, depending on which option was 

chosen. That results must be presented to the user, showing the name of the artist, the 

name of the song, the position in the arousal-valence 2D graphic and the distance to the 

point selected as input in a graphic way. It must be also possible to hear each song in 

                                                           
22

 http://en.wikipedia.org/wiki/M3U 
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the generated playlist through a link (streaming from the server, at least a portion of 

each song). 

 As mentioned earlier, the GUI should be implemented in Qt, which will interact 

directly with MARSYAS. A GUI prototype of the client application is presented in 

Figure 31 (section A.2. GUI prototypes). 

 To summarize what has been said, a table with functional requirements is now 

presented (Table 9): 

 

Requirements Details 
User credentials - Register user 

- Login 
- Logout 
- Edit profile / change password 

Server communication - Connect to server (local / remote) 
- Transmit queries 
- Receive / process results 
- Receive / download audio file or stream 
- Send song to be processed 

Browse information - View all database songs in Thayer’s model (database map) 
- Create playlists by: 

- selecting/uploading a song file 
- a point in the arousal-valence 2D graph 
- playlist trajectory 
- selected area in the arousal-valence 2D graph 

- Apply zoom to the database map 
- Filter map view by: 

- musical genre 
- artist 
- album 
- year (or year interval) 
- other relevant musical attributes 
- a selected group of audio features 

- View mood tracking information (graph) for a database song 
- View mood tracking in real time (graph tracing) 
- View mood tracking information in wave form graph 
- Other methods of viewing results 
- Export playlist (M3U) 
- Exclude songs from suggested playlist 
- Download songs 

 

Table 9: Client application functionalities 
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A.1.2. Server application 

The server application (as seen on the architecture scheme in Figure 34), as expected, 

should answer the queries from the users. It should retrieve playlist data (based on the 

information provided in the query performed by a user from the client application), 

mood tracking information or streaming / download of a song. It will be divided in 

three different parts: a client daemon, an administration daemon and MARSYAS itself, 

besides the database containing the arousal-valence classification information for each 

song and the musical database, that will be composed by the test collection mentioned 

earlier (section 2.7 Test collection). As it was previously mentioned, at least the 

password should be encrypted in order to ensure security to the system. In order to 

achieve this it will be necessary to implement a protocol to successfully perform all the 

operations needed and provide authentication credentials (username, password). 

 Also, the server application should ensure all the tasks involving MARSYAS 

(processing songs and extracting features), interact with the database and provide all 

the communication with both the client and administration application, using the 

referred protocol to serve these purposes. The database could range from a simple set 

of files containing information to something more powerful and complex (a Database 

Management System (DBMS), e. g. SQLite23) – it will depend on the needs and size of 

the database when the application starts to be coded. It will provide methods to add, 

delete and edit song information in the database, although these will be accessed in the 

administration application. The same should be possible for classifiers (add, remove, 

edit) and users. Finally, it should implement methods to change the user's permissions 

(regular or administrator), create, process and drop the entire database. 

 It is now presented a table with functional and quality functionalities desired for 

the server application (Table 10): 

 

 

 

 

 

                                                           
23

 http://www.sqlite.org/ 
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Requirements Details 
User accounts - Create account 

- Remove account 
- Block / Ban account 
- Edit profile 
- Encrypt sensible user information (password at 
least) 

Client communication - User authentication 
- Process user queries 
- Return query results (M3U, song information) 
- Stream / send songs 
- Receive songs from users / administrators 
- Remove song from database 
- Change server settings (administrators) 

Database management - Create database 
- Drop database 
- Delete database 
- Insert new songs information 
- Update / edit existent information 
- Select / browse songs information 

Audio processing - Downsample songs 
- Extract audio features 
- Apply classifiers 

 

Table 10: Server application functionalities 

 

The data model should be studied previously to increase query performance (on 

the case of using a DBMS, as mentioned earlier) – for instance, a table containing 

information about the songs connected through the song ID to a table with the arousal, 

valence and classification information of all the songs. 

 

A.1.3. Administration application 

This application will function as the administrative tool. It will present a GUI to the 

administrator(s) where it could be performed all the operations described previously 

(add, edit and remove songs properties, classification methods, users and permissions 

from the database, along with methods to manipulate the database itself). The 

administrators must also have a username and a password to access the backoffice 

application and the information must be again encrypted and the aforementioned 

protocol sill be used to send information to the offline module, so it could reproduce in 

the database the changes made by the administrator(s). This application should also 

work in online or standalone mode, similar to the client application. 
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Again, a table with functional and quality requirements is now presented (Table 

11): 

 

Requirements Details 
User accounts - Login (as administrator) 

- Edit user account (permissions, password) 
- Remove user account 
- Create account 
- Block user 

Server  communication - Connect to server (local / remote) 
- Transmit queries 
- Receive / process results 
- Upload music files (with title/artist and other information) 

Manage database - Create a new songs database 
- Drop existent database 
- Edit database information 
- Remove song from database / server 
- Add song to database / server (and order feature extraction 
and classification) 
- Add song annotations (arousal-valence  values and 
segmentation information, for validation tests) 
- Add song information 

Manage settings - View existent audio features (grouped by category) 
- Edit list of selected audio features 
- Change distance algorithm used (similarity) 
- Change default classifier (SVM, GMM, k-NN) 
- Edit classifier parameters 
- Change default taxonomy 
- Perform analysis of results (model accuracy) 
- Close users registration 

 

Table 11: Administration application functionalities 

 



Page | 73  
 

A.2. GUI prototypes 

 

Figure 31: Prototype screenshot example for the client application GUI
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As it can be seen above (Figure 31), the client will have the possibility to choose the 

feature category that will classify the song, and specify which features will be used 

inside each category. The same approach is made with classifiers and distance metrics. 

Above this part of the GUI, Figure 31 shows a simple music player, with the common 

commands (play, pause, stop, skip forward, skip backwards) and information (song 

title, artist, album and year of release). A pair of buttons performs the classification 

according to the specified options or cancels it. On the right side of the GUI it can be 

seen a representation of the Thayer’s emotional model, with dots connected, forming a 

playlist. 

It is important to notice that each point has a different color or tonality, 

according to its position in the bi-dimensional axis: the points in the depression 

quadrant all have a blue color, with the tonality changing from light blue (“soft 

depression”, somehow near the origin of the axis) to dark blue (“deep depression”, with 

almost minimal arousal and maximum valence). The other colors include red 

(anxious/frantic quadrant), yellow (exuberance) and green (contentment). It is 

desirable that each song (point) can be clicked, showing information about the 

respective song. Finally, below this model is information panel that can switch from 

showing information related to the playlist generation (the example in Figure 31) and 

mood tracking. 

Also, as the name suggests, a prototype is only a conceptualized interface of the 

future application, and for this reason the final application may have little in common 

in what concerns to the GUI interface (the design of the final application GUI will be 

created “by the book”). 
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Appendix B - Software design 

After describing with some detail the application to be developed, the requirement 

analysis generated some use cases diagrams, which are now presented and can give us a 

clearer, better idea of the features to implement.  

 

B.1. Use cases 

Use cases are part of the Unified Model Language and represent system behavior, 

describing the interactions between one or more actors and the system itself (from the 

actor’s point of view). 

 In this phase, only a couple of use cases were developed, since it is too soon to 

anticipate exactly how the system will work. With the application development, surely 

more use cases will be designed and the ones presented below will be improved. 

The following use cases illustrate the main actions of the mood tracking 

application. The first one (Figure 32) illustrates how a “normal” user interacts with the 

system, detailing the actions he can perform when using the client application, while 

the second one enlightens the actions that a administrator is able to do by using the 

administration application (Figure 33). 
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Figure 32: Use case nº 1 (“normal” user) 
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Figure 33: Use case nº 2 (administrator user) 

 

B.2. System architecture 

The system architecture represents graphically the requirements analysis as it was 

depicted in section A.1. Requirements description. The three main applications are 

represented, as also are the most important internal modules of the server application 

(Figure 34). 
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Figure 34: System architecture 

 

B.3. Data storage 

It is now time to specify how information will be stored in our server application. Since 

the initial brainstorming, several options were addressed, from simple encrypted text 

files to something more sophisticated, like XML files or even “real” databases. After 

realizing that the expected size of the musical database reaches easily hundreds or 

thousands of files and consequentially large amounts of data (the mood tracking data, 

for each second per song is the main responsible for this situation), it became clear that 

simpler solutions like text or XML files would not have the best possible performance 

(heavy and slow basic operations – e.g. search, edit and delete). On the other hand, 

using a full DBMS (Postgres or MySQL, for instance) would be too complex for the 

purpose we have in hands, since it would be imperative to have the system installed in 

every application and always running, making it much more computationally heavier. 

Also, the fact that both the client and the administration applications must be usable in 

both online and offline mode affected this decision - if the application was only to be 

used in online mode, probably a DBMS (more specifically MySQL) would be chosen. 
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 Dealing with these circumstances, SQLite was chosen, since it is a software 

library implementing a self-contained, serverless, zero-configuration, transactional 

SQL database engine. It can be seen as an embedded SQL database engine, but unlike 

the majority of the other SQL databases, it does not have a separate database engine, 

reading and writing information directly to ordinary disk files. Also, the generated 

database file is cross-platform, storing all the information in a unique, small footprint 

file. 

 

B.3.1. Data model 

In this section is presented the Entity-Relationship diagram, which represents the data 

in a abstract and conceptual way. This scheme is very important since, if well-defined, 

it can assure minimum storage space an optimal performance when accessing the 

database. To guarantee it, the database will be normalized to at least the 3rd normal 

form (and if possible, to the Boyce-Codd form, at least for the tables expected to be 

bigger / more used. 

 The database should keep all the critical information about songs (ID, title, 

artist, album, year, filename, among others), mood information (arousal-valence 

values), usernames and respective encrypted passwords. A tentative preliminary 

version of the aforementioned diagram is now presented. It already covers some of the 

needs of the desired database and prevents duplication of values null cells, although 

some improvements to the mood information part are expected in future diagrams. 

Figure 35  presents the Entity-Relationship diagram: 
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Figure 35: Entity-Relationship diagram 


