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1. Introduction 

 

“Music is what feelings sound like.” – Author Unknown 

 

Since the beginning of mankind music has always been present in our lives, serving a myriad of 

purposes both socially and individually. Used in fields as diverse as religion, sports, 

entertainment, health and even in war, “music is what feelings sound like” (Author Unknown), 

conveying emotions and perceptions to the listener, which vary between cultures and 

civilizations. 

With the boom in technologies and the beginning of digital era, the music business 

started expanding and currently music is always present in our days, in our car, while working, 

exercising, in the streets, television and others. This frenetic growth in music supply and 

demand led to new distribution methods and nowadays every person has a large collection of 

albums and songs. These advances in technology exposed some of the current problems in 

music catalog and retrieval, an area that has been left behind, uncovering the need for 

powerful methods for automatically retrieving useful and relevant songs in a given context 

from such huge databases.  

 

1.1. Motivation and Scope 
 

Being involved in a scientific project is always exciting as it permits us to work on something 

cutting-edge, using state of the art technology, researching and planning our way towards the 

desired goals, uncovering new solutions to the posed problem. Since this is the final year of 

MSc, it can also be the last opportunity to be attached to the academic world and work on 

challenging problems, proposing solutions and researching to enrich the University legacy. To 

complement this, the project presented here is extremely interesting, focusing on music mood 

and bringing together two distinct areas: research and software engineering, being a 

tremendous challenge and motivation to me.  

 Since the last decade we have been assisting to an expansion of personal and public 

music collections but also the high growth in industry size and profits due to new distribution 

methods. It is expected that this frenetic growth will not invert or even slow down in the next 

years but increase even more as we move to a more global world each day. With it emerges 

the necessity of new tools and means, much more advanced and flexible than the ones existing 

now, making us capable of easily searching and browsing large music sets based on the needs 

of specific individuals. Music Information Retrieval (MIR) is a relatively new research area that 

is gaining more awareness due to these problems we face today, with several companies and 
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research centers investing on this field. The goal is to find different ways of extracting useful 

information from data in songs, making searching, classification and indexing songs much 

faster and precise. These search criteria can be based on metadata information like title, artist, 

genre, query by example using a small audio excerpt, but also using criteria like mood, taste 

and emotion, that are subjective and may vary between individuals and cultures. Those 

subjective criteria will be approached in this work, since music mood analysis and tracking is 

still in the beginning and offers a wide range of new possibilities that are yet to explore. On the 

other hand, objective criteria analysis, where retrieving songs by author, title and genre as well 

as identifying and watermarking them are already common in the field. 

 Being able to query songs by example or searching based on emotion criteria opens 

enormous opportunities and offers a wide range of possible applications: 

 Playlist generators and music selectors based on mood could give the possibility for 

users exercising or instructors to choose what kind of tracks they would like to listen 

to, ranging high tempo, fast songs to calm and relaxing songs, to be used in meditation 

sessions. 

 Film directors could make use of these capacities to find songs that match the planned 

scene, instigating fear, anger, joy and other kind of emotions in the spectators. 

 An advertiser on radio and television would have a great help when finding the right 

music to captivate desired clients. 

 Call centers that tend to have clients waiting in line listening to the same classical 

music excerpt over and over could now automatically pick some more recent songs 

from alternative genres that would adjust to the objective of maintaining the costumer 

happily waiting. 

 DJs passing music in parties looking for music with similar mood and beat so people 

will not notice changes between songs. 

 Gaming industry, searching for the right sound to apply on specific moments to 

increase the tension, mark a moment of happiness, anger, revenge and other similar 

emotions frequently present in games. 

 Any regular person who, after an exhausting day wants some relaxing music, songs 

that will cheer him up after some sad events. 

 

1.2. Objectives and Approaches 
 

The main objective of this work is to develop a platform able to identify mood and track mood 

variations during the entire audio musical clip. This tool should be capable of, among other 

functions, analyze and audio file and present the identified emotion (e.g., anger, depression, 

contentment, exuberance). To achieve this, a careful planning must be conducted before the 

software implementation, creating a detailed requirements analysis and software design, 

ensuring a stable and robust platform that is prepared to future improvement, since the 
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project should not end with this work. In fact, it should be regarded rather as a starting point 

for future research and work. 

Obviously, to develop a quality work in an area that is relatively new and unexplored 

means that a deep research in the field is imperative first, to gain adequate knowledge in the 

area and identify relevant information in several topics. Namely, audio features (upon which 

mood detection will strongly depend), mood classification methods, and ways to track mood 

variations over the music clip. This requires studying the research work done until know in the 

same area and documenting all this for future reference. 

Another goal is to study the existent frameworks in the audio processing field, like 

Marsyas, which currently have some flaws in terms of manuals and documentation, 

discovering their capabilities and documenting a bit more on how they work and can be used. 

Concluding, the project approaches two distinct areas, having aspects and phases of 

both a research project and a software engineering project. The research part occupied the 

first semester, where the state of the art in MIR was studied and know-how on existent 

approaches, algorithms, classifiers, tools and frameworks was acquired. This was essential to 

produce a quality planning. The research part continued in the second semester, along with 

the software engineering part, with algorithm analysis and evaluation. 

The software engineering followed a waterfall development model, going through all 

necessary phases to implement the desired tool. Based on research and following especially 

Yang et al.’s approach [Yang et al., 2008], a mood tracking system was developed, testing 

features available in the Marsyas framework and evaluating the performance of the most 

recommended classifier [Yang et al., 2008], and Support Vector Machines (SVM). 

After ending the initial phases of identifying requirements, planning the architecture 

and all the software design phase, the implementation part took place. The application was 

developed in the C++ language using the Marsyas framework, which has proven to be robust 

and very fast when comparing with the existent alternatives (MIREX 2008 results1). The Qt UI 

framework was employed to create graphical user interfaces since it is portable and integrates 

well with Marsyas, besides its generalized use.  

The planned application followed a client-server architecture, where the server is 

responsible for handling client connections and process audio files to create the music mood 

database. Clients, on the other side, are able to add new songs to the database and also to 

browse this information, viewing mood changes in songs by retrieving a previously analyzed 

song. 

Part of this work was developed jointly by myself and João Fernandes, who is also 

working in his MSc thesis, titled “Automatic Playlist Generation via Music Mood Analysis”. Our 

objective is similar and some of our work was done together, namely regarding the planning 

phases of the application. However, the objectives take different paths in some parts. While I 

will be focused in mood tracking, providing graphical feedback on how and where the mood 

                                                           
1
 http://www.music-ir.org/mirex/2008/index.php/Audio_Music_Mood_Classification_Results 
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changes during an entire song, João’s work is focused on querying new songs by example and 

playlist generation based on a given music or a point in the mood map. 

Finally, sets of tests were conducted, from an engineering point of view, testing the 

developed software and fixing identified bugs. . Moreover, model validation was also carried 

out , using as base a test collection created and previously used in [Yang et al., 2008] as well as 

additional annotations intended to mood tracking (performed by our team). 

 

1.3. Work Plan 
 

The thesis had the duration of one scholar year with the work being divided in two parts, one 

in each semester, with a report being produced at the end of each one. The first semester 

consisted mainly on theoretical work, with the study and review of relevant MIR topics that 

gave us a good knowledge of the area and help us in the planning of the software to develop. 

The main tasks were: 

 Study and summarization of the state of the art. 

 Requirements analysis. 

 Review of mood based feature extraction. 

 Software design (with graphical user interface tests). 

 Documentation and intermediate report. 

 

The second semester was focused on implementation.  Starting from the foundations 

and knowledge built before and following software engineering processes the planned 

software was implemented. Using the developed tools, various experiments were conducted 

in order to evaluate mood detection and tracking results using a variety of settings and 

approaches. A prototype version of the server and client applications was also produced, 

demonstrating the future possibilities for the project. We have also conducted software tests 

in order to guarantee the robustness of the tool, having implemented the needed fixes and 

refinements. 

The detailed planning of the project is visible at three different stages on the Figure 1 

(initial plan), Figure 2 (end of phase 1) and Figure 3 (end of phase 2). 
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Gantt Diagram – Initial Plan 

 

 

Figure 1: Gantt diagram – Initial Plan 
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Gantt Diagram – End of Phase 1 

 

 

Figure 2: Gantt diagram – End of Phase 1 



14 
 

Gantt Diagram – End of Phase 2 

 

 

Figure 3: Gantt diagram – End of Phase 2 
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2. Mood Tracking in Audio Music: 
Context and Overview 

 

2.1. Mood and Emotion 
 

Definition of Emotion 

Emotion is a complex set of interactions among subjective and objective factors, 

mediated by neural/hormonal systems, which can (a) give rise to affective experiences such as 

feelings of arousal, pleasure/displeasure; (b) generate cognitive processes such as perceptually 

relevant effects, appraisals, labeling processes; (c) activate widespread physiological 

adjustments to the arousing conditions; and (d) lead to behavior that is often, but not always, 

expressive, goal-oriented, and adaptive [Kleinginna and Kleinginna, 1981; cited in Meyers, 

2007]. 

 

Definition of Mood 

 A mood is a relatively long lasting emotional state. Moods differ from simple emotions 

in that they are less specific, less intense, and less likely to be triggered by a particular stimulus 

or event [Thayer, 1989]. 

 

For a very long time, mood and emotions have been a major subject of psychologists, 

being analyzed and discussed often to create the best model to represent emotions. Mood and 

emotions are subjective, varying from person to person and also across cultures. Furthermore 

usually there are many words describing emotions, with some being direct synonyms while 

others representing small variations. Different persons have different perceptions of the same 

stimulus and often use some of these different words to describe similar experiences. 

Unfortunately, there is not a standard, widely accepted, mood taxonomy. That said, correctly 

studying and understanding the existent models for representing emotions, and wisely 

choosing the one that better fits our needs can be seen has one important foundation of this 

work. In order to be useful in music emotion recognition (MER) there are a few main qualities 

that models need to cover:  

 Obviously, it has to accurately represent reality. 

 The most common emotions existent in music must be present in model. 

 The model should have one or more dimensions in order to measure emotions. 
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Several theoretical models have been proposed over the years by authors from Hevner 

to Thayer. These models can be grouped in two major approaches: categorical models or 

dimensional models. Categorical models consist of several categories or states of emotion, 

such as anger, fear, happiness and joy, one example of this is Hevner’s adjective circle. 

Dimensional models, on the other hand, use several axes to map emotions to a plan. The most 

frequent approach is using two axes (e.g. arousal-valence (AV) or energy-stress), with some 

cases of a third dimension (dominance). 

The benefit of dimensional models is the reduced ambiguity when compared with the 

categorical approach. However, some ambiguity still exists, since each of the four quadrants 

can represent more than one distinct emotion (happiness and excitation are both represented 

by high arousal and valence for example). Given this, dimensional models can be further 

divided into discrete (representing the ones described above) and continuous. Continuous 

models, unlike discrete ones, view the emotion plan as a continuous space where each point 

denotes a different emotional state. As a result, all ambiguity related with emotion states is 

removed, however the issue related with arousal and valence dependency still remains. 

Thayer’s model of mood can fit in both sub-categories: it can be considered discrete, having 

four classes, but it can also be regarded as a continuous model, as approached by [Yang et al., 

2008]. 

Next, we will introduce some of the most interesting mood models.  

 

Hevner’s Adjective Circle 

 

Kate Hevner is best known by her research in music psychology, being one of the first 

to do research on the subject of music mood [Hevner, 1936]. She concluded that music and 

emotions are intimately connected, with music always carrying emotional meaning in it. As a 

result, she introduced an emotion (adjective) list, known has Hevner’s Adjective Circle (Figure 

4). This model was later used as a base for some subsequent research in the area. 
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Figure 4: Hevner’s adjective circle [Meyers, 2007] 

 

 Hevner’s list is composed by 67 different adjectives such as serene, tranquil, and quiet 

which are organized in eight different groups in a circular way. However, these list features a 

high number of different emotions in each cluster, most of them being of similar or very close 

meaning. This ambiguity raises several difficulties in discriminating one from another to obtain 

the “ground truth”. 

 

Thayer’s Model of Mood 

 

In 1989 Robert Thayer proposed a two-dimensional mood model [Thayer, 1989], 

offering a simple but effective way to represent mood. Thayer adopted a distinct approach 

than Hevner’s adjectives list, stating that mood depends on two factors: Stress 

(happiness/anxiety) and Energy (calm/energy) combined in a two-dimensional axis forming 

four different quadrants: Contentment, representing calm and happy music; Depression, 

referring to calm and anxious music; Exuberance, referring to happy and energetic; and 

Anxiety, representing frantic and energetic music (see in Figure 5). One of the less strong 

aspects of this model is its low granularity, not having a high number of well defined different 

emotions. On the other hand, its simplicity is an advantage, making it less ambiguous.  Finally, 

a key aspect of the model is that emotions are situated far away from the center, due to the 

fact that the center represents the origin of the referential, where both arousal and valence 

have small values, not representing a clear, identifiable emotion.  



18 
 

 

 

Figure 5: Thayer’s arousal-valence emotion plane [Yang et al., 2008] 

 

Tellegen-Watson-Clark Model of Mood 

 

Tellegen-Watson-Clark model of mood [Tellegen et al., 1999] is a model proposed by 

the three researchers (Tellegen, Watson and Clark), containing a high number of emotions, in 

contrast to Thayer’s model, organized in a circular way like Hevner’s model, using the 

positive/negative affect as one dimension and the pleasantness/unpleasantness versus 

engagement/disengagement (45 degrees rotated) as the other. 
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Figure 6: Tellegen-Watson-Clark model of mood [Laar, 2006] 

 

Naturally, although more models and taxonomies exist and are subject of study we 

have only approached three of the most relevant to this work. Names like Farnsworth [Li et al., 

2003] and Russell [Meyers, 2007] are examples of it.  

 

Comparison of Mood Models 

  

 A brief comparison between the three presented methods and a summary description 

of each one is presented in Table 1. 

 

Model of Mood Perspective Granularity 
(clusters/emotions) 

Description 

[Hevner, 1936] Categorical 8 / 67 List of adjectives /emotions 
organized in eight clusters  

[Thayer, 1989] Continuous 4 / 12 Two-dimensional representation 
with two axis using values for 
Energy and Stress in each one, 

dividing space in four quadrants. 

[Tellegen, 
Watson, & 

Clark, 1999] 

Continuous 8 / 38 Circular representation using 
positive / negative affect as one 
dimension and pleasantness / 

unpleasantness versus 
engagement / disengagement (45° 

rotated) as the other. 
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Table 1: Comparison of Mood Models 

 

2.2. Mood Analysis in MIR Research 
 

With the increasing interest in having ways to identify and extract valuable data from audio 

music with good accuracy, giving us a wide range of opportunities in music databases search 

and categorization, we have assisted in this last decade to the appearance of new research in 

areas like Music Information Retrieval (MIR), Music Emotion Recognition (MER) and Music 

Emotion Variation Detection (MEVD) addressing these needs. 

In this section we will analyze some of the most interesting and promising publications 

that are relevant to this thesis. 

 

Emotion Detection in Music, a Survey [Laar, 2006] 

 

In this paper the author presents a comparison between some publications with 

different methods of emotion detection, making the distinction between the accuracy of each 

method, the granularity of mood taxonomies used and some possible applications. 

 It starts by giving a brief view over some audio features in music that were used in the 

analyzed papers, organizing them into eight distinct groups:  

 Musical surface (or timbre texture) composed with features mostly based on the 

Short-Time Fourier Transformation (STFT). Some of those features are: centroid, roll 

off, spectral flux, zero crossings and low energy / average silence ratio. 

 Spectral Flatness Measure (also called tonality coefficient).  

 Spectral Crest Factor. 

 Mel Frequency Cepstral Coefficients (MFCC) (often used in speech recognition). 

 Daubechies Wavelet Coefficient Histogram (DWCH).  

 Beat and tempo detection.  

 Genre information, which tends to be expensive, needing to be handcrafted in songs 

or pooled from internet. It is also prone to errors. 

 Lyrics. 

After the features introduction, three models of mood are referred to: Hevner’s list, 

Thayer’s model and Tellegen-Watson-Clark’s model, then discussing some issues in MER 

methods, ranging from precision/granularity/diversity (related to the mood model used) to 

questions about computer power, appropriated learning algorithms and the cultural 

background that makes emotion detection so subjective in different world regions. 
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Finally the article presents six emotion detection methods from several authors 

(between 2003 and 2005) with different approaches, comparing them based on accuracy, 

granularity, diversity and selection. 

 

Sentiment Retrieval in Popular Music based on Sequential Learning [Carvalho et al., 2005] 

 

In this article the authors propose a new taxonomy, using a five-point scale based on 

the “happiness” present in a song, that in their view will result in more appealing labels to the 

users in future applications and also will drop the complexity of the algorithm that would exist 

if more categories and adjectives were used. 

The test collection used to evaluate the results consists in 200 songs that were 

previously classified by two persons with an agreement between the two of 82%. 

Songs are converted to 22050Hz, 16 bit mono and four classes of musical features are 

used: Musical Surface, Spectral Flatness Measure, Spectral Crest Factor and Mel Frequency 

Cepstral Coefficients. The classification is done using two different learning algorithms and 

classifiers. 

The conclusion reached by the study shows that taxonomy granularity, using a binary 

problem against a more “fine-grained” problem (of five labels) has a much higher impact on 

precision (13.5% vs. 63.45% in error rate) than the used classifiers and learning algorithms, 

which only made de results vary within 63.45% and 67%. 

Some of the problems and limitations of this method are related with the absence of 

information on learning algorithms and also the lack of details in the test collection as well as 

the features used. 

 

Detecting Emotion in Music [Li et al., 2003] 

The main objective of this work is to develop a classification system for music, 

admitting that the same song can have more than one emotion during the entire clip. 

The taxonomy used consists of the ten emotions present in the Farnsworth model and 

three extra emotions added according to a test subject who indexed the test songs. The 

musical database for this test was composed of 499 songs, with 50% being used for training 

and the remaining 50% used for testing. These songs were selected from 128 music albums (at 

least four songs each) and the collection covered four major music types: Ambient (120 files), 

Classical (164 files), Fusion (135 files), and Jazz (100 files). 

 The employed acoustic features used consisted on timbral texture features, rhythm 

content features (beat and tempo detection) and pitch content features, with the used 

classifiers being based on Support Vector Machines. 
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The final results were modest, with an accuracy of around 50%, still better than the 

last paper, while a higher granularity was used here. 

 

Content-based Music Similarity Search and Emotion Detection [Li et al., 2004] 

 

This paper describes a system that addresses two different objectives:  similarity 

search, returning results that are (more or less) similar to the selected musical piece and also 

mood detection in a song. 

The mood taxonomy is of low granularity, using the following categories: (Cheerful, 

Depressing), (Relaxing, Exciting) and (Comforting, Disturbing). As for the test collection used, it 

is composed of 235 musical pieces, all from the same genre – Jazz. Two subjects were 

responsible for the annotations. The extracted audio features are Mel Frequency Cepstral 

Coefficients, Musical surface features and Daubechies Wavelet Filters, which, according to the 

author, returned a total of 35 different frequency bands but not all were relevant. No detailed 

information on the used classifiers was presented. 

The results showed a good accuracy, ranging from 70% to 83%. However it should be 

noted that the granularity was low and only one musical genre was tested. Accuracy results 

also varied between the two subjects, possibly due to different cultural backgrounds. One 

suggestion to solve this is to let the algorithms be trained for each subject. It would also be 

interesting to see how it would perform with different musical genres. 

 

Music Information Retrieval by Detecting Mood via Computational Media Aesthetics [Feng et 

al., 2003] 

 

In this research a new system for mood detection in music is present, stating that 

tempo and articulation in a music piece can be used to identify emotions. Only four emotions 

are used in this system: Happiness, Sadness, Anger and Fear. To extract tempo, the authors 

states that it is possible to use more than one algorithm. Determining the type of articulation is 

done using Average Silence Ratio, which represents what percentage of sound in one frame is 

below the average level. The classification is then performed recurring to a neural network 

with three layers, deciding the music score for each one of the four categories. 

The tests were carried out using a collection of 330 songs for training but only 23 were 

used for testing purposes. This seriously compromises the results since the sample is too low 

and could even be handpicked to generate good results. Other problems related with the test 

collection are the lack of information about the musical genres or details on how it was 

annotated. 
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The final results are also awkward, with three of the four categories (Happiness, 

Sadness and Anger) scoring high results, between 75% and 86%, and fear only reaching 25%. 

This is, in part, to the restricted test collection, where only three songs were identified with 

Fear emotion. 

 

Automatic Mood Detection from Acoustic Music Data [Liu et al., 2003] 

 

The main focus of this paper is on mood detection in classical music and mood 

tracking, taking into consideration the fact that mood can change along the music, especially 

classical music. To achieve this, the Thayer’s model of mood serves as base for the algorithm, 

with the intensity of the music being mapped to energy and both timbre and rhythm mapped 

to the stress component. The used algorithms rely on features such as Root Mean Square 

value in each sub band (for intensity), spectral shape features like Centroid, Roll off and 

Spectral flux (for timbre) and a Canny estimator, used to detect beat (for rhythm). The 

resulting information is then processed by two frameworks with distinct approaches, 

hierarchical and non-hierarchical. The hierarchical approach is conducted in two steps: it first 

splits songs in two groups based on intensity (Depression / Contentment versus Exuberance / 

Anxious); then, the second step makes the distinction between the two emotions existent in 

the selected group. In the non-hierarchical framework all the features are applied in a single 

step, making immediately the choice between one of the existent four groups. 

The database used for evaluation consists of 250 classical music pieces, split into 20 

seconds clips, 75% being used for training and 25% for testing. The results are very good, with 

accuracy reaching values from 76.6% to 94.5% for the hierarchical framework, with the non-

hierarchical reaching 64.7% to 94.2%. Although the results were in fact very high, the fact that 

only classical music was used and the low granularity of the mood taxonomy, with only four 

possible emotions should be taken into consideration. 

 

Disambiguating Music Emotion Using Software Agents [Yang et al., 2004] 

 

This work tries to extract mood information from music, comparing the results with 

human annotations for the same music. A different approach is taken in this paper, with 

annotated lyrics being also analyzed. The chosen mood model is the Tellegen-Watson-Clark’s, 

with authors giving more emphasis to the more negative emotions since, according to the 

article, they are harder to identify. Wavelet tools, beats per minute (BPM) detection methods 

and timbral features together with 12 features from Sony’s EDS system [Pachet et al., 2004; 

cited in Yang et al., 2004] were used. The results showed a correlation of 0.90 between 

annotated and algorithm values, with features like BPM detection and Sum of Absolute Values 

of the Normalized FFT performing the best in identifying songs according to the two existent 
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groups. Following this, lyrics are analyzed for defined keywords in order to differentiate 

between emotions. 

The database used is composed by 152 Alternative Rock music pieces, 30 seconds 

each, with lyrics being present in 145 of them. The analysis of these lyrics helped 

differentiating songs that were in the same category, with an accuracy of 82.8%.  

 

Automatic Mood Detection and Tracking of Music Audio Signals [Lu et al., 2006] 

 

This paper is about automatic music mood detection on acoustic music data and also 

mood tracking on a music piece, by dividing the music into several independent segments, 

each containing a homogenous emotional expression. From the same authors of one of the 

previous papers [Liu et al., 2003], this work improves and continues the methods proposed 

there. 

 Using Thayer’s mood taxonomy to classify emotions, the authors approach distinct 

solutions by proposing two types of frameworks, hierarchical and non-hierarchical, showing 

the advantages of using the first and being capable of emphasizing the most suitable features 

to different detection tasks. Both frameworks classify music sets based on the following 

feature sets (first each clip is down-sampled to 16 kHz, 16 bits, mono channel and divided into 

non overlapping frames of 32ms length): 1 – intensity (energy in each sub band), 2 – timbre, 

composed by MFCC (complemented with octave-based spectral contrast), spectral shape 

features (brightness, bandwidth, roll off and spectral flux) and spectral contrast features (sub-

band peak, sub-band valley and sub-band contrast); 3 - rhythm (rhythm strength, rhythm 

regularity and tempo). 

The non-hierarchical framework uses a single GMM combining the four mood clusters. 

It receives results from all extracted features from the three sets (intensity, timbre and 

rhythm), returning the calculated results. On the other hand, the hierarchical framework is a 

bit more complex, using several GMM with 16 mixture models. Each GMM is built using a set 

of features regarding each mood cluster, organized in three layers. As an example, a song 

classified in GMM1 as having low intensity will be either contentment or depression, 

descending to layer two it will be classified by GMM2 (using timbre features) and GMM3 (using 

rhythm). The results are summed and one of the two moods is chosen (contentment or 

depression). Even though more complex, the hierarchical framework gives better results and 

makes a better use of sparse training data, important when the available training data is 

limited. 

As for mood tracking, the goal was to go away from some previous ideas that used a 

sliding window of certain length to identify mood in that piece. However, such approach would 

most of the times have mixed moods contained in the same windows and thus could not be 

recognized correctly. The new approach proposed by authors tries to find potential mood 

change boundaries. This method consists in a two step mood tracking scheme. First, the goal is 

to find potential boundaries, recurring to intensity (using the intensity outline to detect 
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possible boundaries), timbre and rhythm (to check for possible mood changes in possible 

boundaries). Then, the musical clip is divided into several independent segments, each 

containing a constant mood. 

Experiments were conducted using a music database of 250 music pieces, mostly 

classical, which can be seen has a potential problem since the algorithms can be tuned to this 

specific genre only. These music pieces were annotated by music experts according to the four 

mood clusters, ignoring clips where there was no consensus about the existent mood. From 

that 75% of the clips were used for training and the remaining 25% for testing. 

The results showed an average precision on mood detection of 86.3%, with average 

recall of 84.1%. In mood tracking tests the results showed that about 84.1% of the boundaries 

are recalled and the precision is about 81.5%. The results however, have much room for 

improvements, not only by finding more powerful audio features but by using various music 

genres and having more mood types covered in the used taxonomy. 

 

A Mood-Based Music Classification and Exploration System [Meyers, 2007] 

 

In his MSc thesis, Owen Craigie Meyers proposed to design and develop a tool that 

would allow users to automatically generate a playlist that suits a desired activity or mood, 

using audio information extracted from songs with context-aware data such as song lyrics. The 

author starts by presenting the background of MIR and psychology of music in general. After 

that, several fields are approached, e.g., the existent emotion models, feature extraction and 

classification frameworks, playlist generation tools and natural language processing. There is 

also a focus on the most popular music recommendation systems and how they could be 

useful to evaluate the final work.  

Following this research, the author made several choices based on it to design and 

implement the application, namely an updated version of Hevner’s emotions model adjective 

list by Schubert was mapped to Russell’s model. Audio analysis was done using the CLAM2 

framework to extract mode and harmony, while tempo, rhythm and loudness are extracted 

with ENCLIAnalyzer3. The lyrics processing is done using Lyricator4 to search and download the 

appropriate song lyric, that is then passed to a modified version of guess_mood function 

included in ConceptNet’s natural language tools, outputting emotional concepts based on 

Russell’s emotional model. The final steps are related with the song classification, which is 

done using at first a decision tree (for preliminary classification of the song database and  then 

applying a k-nearest neighbor (k-NN) classification algorithm. This result is later combined with 

the lyric’s affective value to give the global emotion for the song. 

The evaluation of the system performance and lyrics classification was done using a 

database of 372 songs. The results obtained were compared with three different sources: 

                                                           
2
 http://clam-project.org/ 

3
 http://www.echonest.com/ 

4
 http://www.media.mit.edu/_meyers/lyricator.php 
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Experts evaluation, from All Music Guide5 and other projects like Pandora Internet Radio6 and 

The Music Genome Project; using social tagging networks like Last.FM7, Qloud8 and MyStrands; 

and user evaluation, based on a study where 12 students tested the program. In general, the 

results were good, with the system being able to correctly identify a good amount of songs 

(although the author did not properly quantified it). A few weaknesses and problems emerged, 

mainly in the feature extraction stage, due to the usage of only five features, losing useful 

information (pitch, melody, timbre) with this decision. Also, misclassifications in some features 

like tempo or mode had a large impact on the classification. In lyrics analysis, there were some 

problems too due to the lack of any sense of song-level semantic content, resulting in 

misclassifications. Nevertheless lyrics proved to be of great value to give a correct 

identification of moods. 

As a final note some future improvements were listed, being the most relevant the 

addition of newer, more complex and powerful audio features, the usage of regression 

analysis to make the system more statistically objective and increasing the classification results 

by improving the current classification algorithms or using alternatives like Support Vector 

Machines (SVM) and Neural Networks. 

 

A Regression Approach to Music Emotion Recognition [Yang et al., 2008] 

 

This paper presents a solution to music emotion recognition (MER). To this end, the 

author follows a regression approach, trying to track mood by predicting the arousal and 

valence values of each music sample. To categorize these results, the Thayer’s model of mood, 

consisting of the continuous (not discrete) arousal/valence emotion plane, is used instead of 

binary values, giving more freedom to describe a song and making it possible to see the 

proximity of the different music clips based on their similarity. 

As for the musical features, this paper makes use of a total of 114 features including 

spectral contrast algorithm, Daubechies wavelets coefficient histogram (DWCH) and 

collections from both PsySound9 and Marsyas, two computer frameworks with feature 

extraction capabilities. In more detail, Spectral contrast represents 12 features and consists of 

the relative characteristics of each spectral sub band, reflecting the distribution of harmonic 

components. DWCH represent 28 features and have better ability in representing both local 

and global information. PsySound extracts 44 features including loudness, level, pitch 

multiplicity and dissonance based on psychoacoustic models and, finally, Marsyas, extracts a 

total of 30 features including timbral texture, rhythmic content and pitch content. 

In the regressor training, three distinct regression algorithms were tested: Multiple 

Linear Regression (MLR), Support Vector Regression (SVR) and AdaBoost.RT (BoostR), with SVR 

                                                           
5
 http://www.allmusic.com/ 

6
 http://www.pandora.com/ 

7
 http://www.last.fm/ 

8
 http://www.qloud.com/ 

9
 http://psysound.wikidot.com/ 
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presenting the best results. For improving results and since not all features are relevant or of 

sufficient quality, the best ones are selected using a feature selection algorithm (FSA) named 

RReliefF Principal component analysis (PCA) is also used on the ground truth to reduce 

correlation between arousal and valence. 

Evaluation is made based on a database of 195 popular songs selected from Western, 

Japanese and Chinese albums, with songs selected by being distributed uniformly in each 

quadrant of the emotion plane and having one certain dominant emotion. 

Although the paper has shown that regressions can be used for mood tracking, the 

final results of this study were weak, with R2 statistics reaching 58.3% for arousal ad 28.1% for 

valence. Some of the identified limitations are due to the possible dependence between 

arousal and valence (in part sorted out with PCA), while identified improvements have to do 

with better features and lyrics usage, addressing the subjectivity issue and evaluating the 

regression approach with a large-scale database. 

 

Comparison and Conclusions 

For all the articles presented previously, the most relevant features are compared in 

the following table (Table 2). The scale goes from very bad (--) through moderate (+/-) to 

excellent (++). 

Papers Precision Granularity Diversity Selection 
[Carvalho et al., 2005] + - +/- - 

[Li et al., 2003] +/- ++ ++ - 
[Li et al., 2004] + +/- +/- - 

[Feng et al., 2003] ++ - +/- - 
[Liu et al., 2003] +/++ - +/- ++ 

[Yang et al., 2004] ++ +* -- - 
[Lu et al., 2006] +/++ - +/- ++ 
[Meyers, 2007] + + +  

[Yang et al., 2008] -  + ++ 
Table 2: Comparison of methods presented in previous papers 

* – Requires annotated lyrics to increase precision. Without them the granularity would be 

much lower. 

This analysis showed a negative relation between granularity of emotions taxonomy 

and the accuracy of the methods. Papers with a high precision were also the ones where a low 

granularity was used, with only an average of four emotions used. On the other hand, when a 

higher number of emotions were chosen the results went down, with much lower values for 

precision being present. As for the learning and evaluating aspect, they were quite similar 

between all the publications, requiring a large database of songs with the present emotions 

manually identified by someone. 
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The main conclusions taken from these papers are that, first of all is clear that there is 

no perfect method for mood detection yet and probably there never will be. Nevertheless 

from an application point of view, there are methods that may be sufficient, depending on the 

needs for precision and granularity. There is also an urgent need for a database of songs from 

all genres correctly identified with a set of standardized model of human emotions than can be 

used to evaluate different algorithms correctly. 

As for the subject of this work – mood tracking –, some of the latest papers started to 

approach this issue, finally looking to moods as something that change during a song. Both [Lu 

et al., 2006] and [Yang et al., 2008] suggest different approaches to the mood tracking 

problem. We will follow the later since it fits better in our objectives. 

 

2.3. Mood Tracking 
 

Tracking mood changes is a relatively new subject inside MIR and something that has not been 

a target of significant research yet. Given this almost embryonic phase, it is therefore normal 

that few papers tackling this issue have been produced and made available, with [Yang et al., 

2008] being the most interesting one. In it, Yang tries to predict mood by using a regression 

approach. A classification model is first obtained and then small song segments are 

individually, estimating in this way arousal and valence values through the song. A different 

strategy is employed in [Lu et al., 2006]. This one is more complex and uses more information, 

analyzing the songs twice (two passes) to guess possible mood change boundaries and 

identifying only mood changes between the four clusters. 

Below, we describe the three MEVD suited to the Thayer’s mood model proposed in 

[Yang et al., 1008] 

 

The Fuzzy Approach 

 This approach uses Thayer’s model of mood and for each input sample a fuzzy vector is 

assigned, indicating the strength of each emotion class (one of the four quadrants in the 

model) by fuzzy classifiers. The fuzzy vector   for the four emotion classes is expressed as (1): 

                       
 

   
 (1) 

 

where      is the relative strength of class  , using the class with highest strength as the 

classification. 

 To compute AV values the geometric relationship of the classes are exploited, using 

the following transformation (2), (3): 
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                (2) 

                (3) 
 

 This approach does have, however, one major flaw. Geometric relationship between 

arousal and valence is inexact and performing arithmetic operations on AV values is not 

accurate. 

 

The System Identification Approach (System ID) 

 The idea behind System ID is to use a system identification technique to model music 

emotion as a function of 18 musical features. In [Korhonen et al., 2006], the process of audio 

analysis is performed in intervals of one second to extract audio features from western 

classical music datasets. Results show average    statistics of 78.4% for arousal and 21.9% for 

valence.  

This approach is better than the previous one, not using any geometric operation and 

showing good results. However there is a crucial need in temporal information, as System ID 

computes the AV values by using the temporal relationship between segments, making it 

useless in MER, since this information is not available.  

 

The Regression Approach 

The approach proposed in the paper is based on regression training. Regression theory 

is a well studied and proven theory aiming at predicting a real value from observed variables or 

features in the past. There are a good number of advantages by using a regressor in this kind 

of problems: has a sound theoretical foundation, allows easy performance analysis and 

optimization and usually provides reliable results. It is also important to note that unlike 

previous strategies, it does not rely on temporal information or on geometric operations. 

The problem can be described as, given   inputs         ,      , where    is a 

feature vector for  th input sample, and      is the real value to be predicted for the  th 

sample, the regression system trains a regressor      such that the mean squared error   is 

minimized (4): 

  
 

 
           

  

   
   (4) 

 

where       is the prediction result for the  th sample. 

 To use regression theory to predict AV values directly a series of points have to be 

taken into consideration, being the most relevant: 

 The domain of  , confined to [-1, 1+, according to Thayer’s model. 
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 Regressor accuracy is dependent on the relevance of the selected audio features. 

 Various regression algorithms should be tested in order to select the best one. In Yang 

et al.’s study, the selected ones were Multiple Linear Regression (MLR), Support Vector 

Regression (SVR) and AdaBoost.RT (BoostR). 

 Two regressors are needed, in order to predict both arousal (  ) and valence (  ). 

 The training strategy is important. Since there is a certain dependency between AV, a 

study is needed to verify if accuracy improves by taking into consideration this 

dependency when training the regressors (instead of training them independently). 

 

Comparison and Conclusions 

 A brief comparison between the previously presented mood tracking methods can 

seen in Table 3. 

 

Name Accuracy Temporal Information Geometric Operation 

Fuzzy Approach N/A Not needed Needed 

System ID Approach 
78.4% (a) 
21.9% (v) 

Needed Not Needed 

Regression Approach 
58.3% (a) 
28.1% (v) 

Not Needed Not Needed 

Table 3: Comparison on mood tracking methods (adapted from [Yang et al., 2008]) 

 

 Although there are a few number of different mood tracking methods, they all present 

some limitations or low accuracy. Given the previous comparison, we will follow the regression 

approach presented by Yang [Yang et al., 2008]. Even if the results were not the best, it is the 

one that has more future in MER, not needing to exploit geometric or temporal information 

that is not always available. Using better audio features, identifying possible limitations and 

improving or merging new approaches will improve the results. 

 

2.4. Audio Features 
 

Audio features extraction is probably the most important step in music emotion recognition. 

These “features” are used to represent characteristics present on audio signals and naturally 

their use is frequent in most, if not all, works in the field. However, the general strategy 

applied in most approaches focus on developing complex classifiers and implementing good 

processes of feature selection, classification algorithms and tuning parameters, not always 

explaining why the initial feature sets were chosen and what they represent or in other cases 

leaving that to background, picking the ones what were referenced in previous works. 
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Taking this into account, we discuss in this section the existent features for our 

problem, explaining what they represent and how they work. 

 

2.4.1. Intensity 
 

Root-Mean-Square Energy (RMS) 

Root-Mean-Square is used to measure the power of a signal over a window. The global 

energy of a signal   can be computed by taking the root average of the square of the 

amplitude (RMS) [McEnnis et al., 2005], as shown below (5): 

       
 

 
   

 

 

   

  
  

    
      

 

 
 (5) 

 

Root-Mean-Square Derivative 

This feature represents the window-to-window change in RMS. It is an indication of 

change in signal power. 

 

Root-Mean-Square Variability 

The standard deviation of the RMS of the last N windows (jAudio, introduced in section 

2.6.1, assigns this parameter a value of 100). 

 

Less-Than-Average Energy 

The energy curve can be used to get an assessment of the temporal distribution of 

energy, in order to see if its remains constant throughout the signal, or if some frames have 

more contrast than others. One way to estimate this consists in computing the low energy 

rate, i.e. the percentage of frames showing less-than-average energy [Tzanetakis et al., 2002; 

cited in Lartillot, 2009], as shown in Figure 7. 

 

Figure 7: Energy curve with lower-than-average energy frames highlighted [Lartillot, 2009]. 
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Fraction of Low Energy Frames 

This feature is defined as the fraction of the 100 previous windows whose RMS is less 

than the mean RMS. This can indicate how much of a signal section is quiet relative to the rest 

of the signal section, an indication of the variability of the amplitude of windows. 

 

2.4.2. Rhythm 
 

Rhythmic Fluctuation 

This feature represents the rhythmic periodicity along auditory channels. This rhythmic 

feature is based on spectrogram computation transformed by auditory modeling and then 

spectrum estimation in each band [Pampalk et al., 2002; cited in Lartillot, 2009]. According to 

[Lartillot, 2009], this process can be described in two steps: 

 First the spectrogram is computed on frames of 23 ms and half overlapping, then the 

Terhardt outer ear modeling is computed, with Bark-band redistribution of the energy, 

and estimation of the masking effects, and finally the amplitudes are computed in dB 

scale. 

 Then a FFT is computed on each Bark band, from 0 to 10 Hz. The amplitude 

modulation coefficients are weighted based on the psychoacoustic model of the 

fluctuation strength [Fastl, 1982; cited in Lartillot, 2009]. The result is a matrix of the 

rhythmic periodicities for each different Bark band. 

 

Tempo 

Tempo is the speed or pace of a given music piece. In modern music is usually 

indicated in beats per minute (BPM). Tempo is usually estimated by detecting periodicities 

from the onset detection curve. 

 

Strength of Strongest Beat 

This estimates how strong the strongest beat in the beat histogram is compared to 

other potential beats [McKay, 2005]. 

 

Beat Sum 

Represents the sum of all bins in the beat histogram. This is a good measure of the 

importance of regular beats in a signal [McKay, 2005]. 
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2.4.3. Timbre 
 

Attack Time 

Attack time is the estimation of temporal duration for a signal to rise to its peak (e.g., 

in amplitude), as shown in Figure 8. 

 

Figure 8: Attack Time detection [Lartillot, 2009] 

 

Attack Slope 

Attack slope is another good description of the attack phase. It consists on calculating 

the average slope of the entire attack phase, since its start to the peak as shown in Figure 9. 

 

Figure 9: Attack Slope example [Lartillot, 2009] 

 

Zero Crossing Rate 

Zero Crossing Rate represents the number of times the waveform changes sign in a 

window (passes the X-axis – see Figure 10). It can be used as a simple indicator of noisiness. As 

an example, heavy metal music, due to guitar distortion and heavy percussion, will tend to 

have much higher zero crossing values than classical music. 
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Figure 10: Zero Crossing Rate - Waveform crossing the X-Axis [Lartillot, 2009] 

 

Zero Crossing Rate can be calculated using (6): 

   
 

 
                           

 

   

   (6) 

 

where the      function is 1 for positive arguments and 0 for negative arguments and      is 

the time domain signal for frame t [Tzanetakis, 2002]. 

 

Zero Cross Derivative 

The absolute value of the window-to-window change in Zero Cross, returns an 

indication of change of frequency as well as noisiness. 

 

Spectral Roll Off 

Spectral Roll Off is often used as an indicator of the skew of the frequencies present in 

a window. It consists in finding the fraction of the total energy (Hz) that is contained below a 

given percentage, as shown in Figure 11. The percentage varies among authors, with 85% 

being the current default value for most frameworks following [Tzanetakis et al., 2002; cited in 

Lartillot, 2009], while [Pohle et al., 2005; cited in Lartlillot, 2009] propose 95%. 

According to [Tzanetakis, 2002], mathematically the Spectral Roll Off is defined as the 

frequency    below which 85% of the magnitude distribution is concentrated (7): 

      

  

   

            

 

   

   (7) 

 

where       is the magnitude of the Fourier transform at frame t and frequency bin  . 
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Figure 11: Spectral Roll Off with frequency [Lartillot, 2009] 

 

High Frequency Energy 

High frequency energy, also called brightness by some authors, consists in fixing a 

minimum frequency value, and measuring the amount of energy above that frequency, as 

exemplified on Figure 12. The result is expressed as a number between 0 and 1, with the 

proposed cut-off frequency values varying between 1500 Hz [Lartillot, 2009], 1000 Hz [Laukka 

et al., 2005; cited in Lartillot, 2009] and 3000 Hz [Justin, 2000; cited in Lartillot, 2009]. 

 

Figure 12: Spectral Roll Off using % [Lartillot, 2009] 

 

Spectral Flux 

Spectral Flux is a measure of the amount of spectral change in a signal, i.e., the 

distance between adjacent frames. Spectral flux has also been shown by user experiments to 

be an important perceptual attribute in the characterization of musical instrument timbre 

[Gray, 1975; cited in Tzanetakis, 2002]. 

 According to [Tzanetakis, 2002] the spectral flux is defined as the squared difference 

between the normalized magnitudes of successive spectral distributions (8): 

                       

 

   

  (8) 
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 There,      ,         are the normalized magnitude of the Fourier transform at the 

current frame  , and the previous frame     respectively. 

 

Mel-Frequency Cepstral Coefficients (MFCC) 

MFCCs offer a description of the spectral shape of the sound. The frequency bands are 

positioned logarithmically (on the Mel scale), which approximates the human auditory 

system’s response more closely than the linearly-spaced frequency bands.  

The calculation of this feature works as follows [Tzanetakis, 2002]. After taking the log-

amplitude of the magnitude spectrum, the FFT bins are grouped and smoothed according to 

the perceptually motivated Mel-frequency scaling. Then, in order to decorrelate the resulting 

feature vectors, a Discrete Cosine Transform is performed. Usually, only the first 13 

components are returned since most of the signal information tends to be concentrated in a 

few low-frequency components of the discrete cosine transform (DCT). These 13 coefficients 

are mostly used for speech representation but [Tzanetakis, 2002] states that the first five 

coefficients are adequate for music representation. 

An image detailing how the process occurs using the MIR ToolBox is shown in Figure 

13. 

 

 

Figure 13: MFCC implementation according to [Lartillot, 2009] 

 

Sensory Dissonance (Roughness) 

Sensory dissonance, also known as Roughness, is related to the beating phenomenon 

that occurs whenever a pair of sinusoids is close in frequency. [Plomp, 1965; cited in Lartillot, 

2009] propose an estimation of sensory dissonance depending on the frequency ratio of each 

pair of sinusoids, as represented in Figure 14. 
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Figure 14: Sensory Dissonance depending on frequency ratio [Lartillot, 2009] 

 

Spectral Peaks Variability (Irregularity) 

Spectral peaks variability or irregularity is, as the name indicates, the degree of 

variation of the successive peaks of the spectrum.  

 According to [Lartillot, 2009], the MIR ToolBox has two distinct approaches to Spectral 

Peaks Variability calculation: 

 The default approach is based on [Jensen, 1999; cited in Lartillot, 2009], where the 

irregularity is the sum of the square of the difference in amplitude between adjoining 

partials (9): 

           
 

 

   

      
 

 

   

 (9) 

 

 The second approach is based on [Krimphoff et al., 1994; cited in Lartillot, 2009], 

where the irregularity is the sum of the amplitude minus the mean of the preceding, 

current and next amplitude (10): 

     
            

 
 

   

   

 (10) 

 

Spectral Centroid 

The Spectral Centroid is a measure of spectral shape. Higher centroid values 

correspond to “brighter” textures with more high frequencies. It is defined as the center of 

gravity of the magnitude spectrum of the STFT (11): 

   
         

   

       
   

   (11) 

 

where       represents the magnitude of the Fourier transform at frame   and frequency bin 

  [Tzanetakis, 2002]. 
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According to [Gray, 1975; cited in Tzanetakis, 2002], spectral centroid has been shown 

by user experiments to be an important perceptual attribute in the characterization of musical 

instrument timbre. 

 

Linear Prediction Reflection Coefficients 

Linear prediction reflection coefficients (LPRC) are used in speech research as an 

estimate of the speech vocal tract filter [Makhoul, 1975; cited in Tzanetakis, 2002]. They are 

also used in musical signals.  

 

Linear Spectral Pairs 

Linear Spectral Pairs (LSP) or line spectral frequencies (LSF) are used to represent linear 

prediction coefficients (LPC) for transmission over a channel. Because LSPs are not overly 

sensitive to quantization noise and stability is easily ensured, LSP are widely used for 

quantizing LPC filters. For this reason, LSPs are very useful in speech coding. 

 

Strongest Frequency via Spectral Centroid 

This feature is an estimate of the strongest frequency component of a signal, in Hz, 

found via the spectral centroid [McKay, 2005]. 

 

Spectral Crest Factor 

The Spectral Crest Factor (SCF) or peak-to-average ratio (PAR) is a measurement of a 

waveform, calculated from the peak amplitude of the waveform divided by the RMS value of 

the waveform (12). 

  
       

    
   (12) 

 

Spectral Flatness Measure  

Spectral Flatness Measure (SFM) is a measure used to characterize an audio spectrum. 

A high SFM indicates that the spectrum has a similar amount of power in all spectral bands – 

this would sound similar to white noise, and the graph of the spectrum would appear relatively 

flat and smooth. A low spectral flatness indicates that the spectral power is concentrated in a 

relatively small number of bands – this would typically sound like a mixture of sine waves, and 

the spectrum would appear "spiky". 
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The SFM is calculated by dividing the geometric mean of the power spectrum by the 

arithmetic mean of the power spectrum (13) 

    
         

   

 

        
   

 

   (13) 

 

where      represents the magnitude of bin number  .  

 

Inharmonicity 

Inharmonicity measures the amount of partials that are not multiples of a given 

fundamental frequency,   , as shown on Figure 15. Inharmonicity influences the timbric 

perception of a given sound.  

 

Figure 15: Fundamental frequency (f0) and its multiples [Lartillot, 2009] 

 

2.4.4. Pitch 
 

Pitch (f0) 

Pitch represents the perceived fundamental frequency of a sound. It is one of the 

three major auditory attributes of sounds, along with loudness and timbre. Pitch (as an audio 

feature) typically refers to the fundamental frequency of a monophonic sound signal and can 

be calculated using various different techniques [Tzanetakis, 2002]. One of the methods 

employed in Marsyas to calculate pitch is the YIN algorithm [Cheveigné et al., 2002] 

 

Strongest Frequency via FFT maximum 

This is an estimate of the strongest frequency component of a signal, in Hz, found via 

the FFT bin with the highest power [McKay, 2005]. 

 

2.4.5. Tonality 
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Key (Tonal Center Positions) 

This feature gives a broad estimation of tonal center positions and their respective 

clarity [McKay, 2005]. 

 

Mode 

The mode is an important feature that estimates the difference between major and 

minor keys (the modality of a piece).  

 

Tonal Centroid 

Tonal centroid is a 6-dimensional feature vector. It corresponds to a projection of the 

chords along circles of fifths, of minor thirds, and of major thirds [Harte et al., 2006; cited in 

Lee, 2007]. It is based on the Harmonic Network or Tonnetz, which is a planar representation 

of pitch relations where pitch classes having close harmonic relations such as fifths, 

major/minor thirds have smaller Euclidean distances on the plane. By calculating the Euclidean 

distance between successive analysis frames of tonal centroid vectors, they successfully detect 

harmonic changes such as chord boundaries from musical audio (exemplified in Figure 16) 

[Lee, 2007]. 

 

 

Figure 16: Tonal Centroid for A major triad (pitch class 9, 1 and 4) is shown at point A [Lee, 2007] 

 

Harmonic Change Detection Function 

The Harmonic Change Detection Function (HCDF) is the flux of the tonal centroid 

[Harte et al., 2006; cited in Lartillot 2009] 

 

2.4.6. Musical Features 
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Musical features are a set of small features introduced in [Tzanetakis, 2002], which are based 

on musical content and information extracted by previously discussed features. They can 

belong to two distinct categories: rhythmic and pitch content, and will be usually referred as 

Musical Features only. Details of these features are presented below: 

Rhythmic content features, calculated with recourse to the Beat Histograms (BH) of a song: 

 A0, A1: relative amplitude (divided by the sum of amplitudes) of the first (A0), and 

second (A1) histogram peak 

 RA: ratio of the amplitude of the second peak divided by the amplitude of the first 

peak 

 P1, P2: Period of the first (P1) and second (P2) peak in BPM 

 SUM: overall sum of the histogram (indication of beat strength) 

 

Pitch content features, calculated with recourse to Folded and Unfolded Pitch Histograms (FPH 

and UPH): 

 FA0: Amplitude of the maximum peak of the folded histogram. This corresponds to the 

most dominant pitch class of the song. For tonal music, this peak will typically 

correspond to the tonic or dominant chord. This peak will be higher for songs that do 

not have many harmonic changes. 

 UP0: Period of the maximum peak of the unfolded histogram. This corresponds to the 

octave range of the dominant musical pitch of the song. 

 FP0: Period of the maximum peak of the folded histogram. This corresponds to the 

main pitch class of the song. 

 IPO1: Pitch interval between the two most prominent peaks of the folded histogram. 

This corresponds to the main tonal interval relation. For pieces with simple harmonic 

structure, this feature will have a value of 1 or -1, corresponding to fifth or fourth 

intervals (tonic-dominant). 

 SUM: The overall sum of the histogram. This feature is a measure of the strength of 

the pitch detection. 

 

2.4.7. Statistical Features 
 

Statistical features are a class of features calculated using some of the previously defined 

features. It is possible to extract statistical data from almost all features, typically 1st and 2nd 

order statistics like means and standard deviations, as well as higher-order statistics 

(skewness, kurtosis and others). 

 

2.4.8. Feature Relevance 
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One of the main goals of this work is not only to gain knowledge on the existent audio features 

that may be applied to mood detection but also to understand the relevance of each one on 

this topic. A similar study was previously done by Yang and the results are presented at [Yang 

et al., 2008]. Those results served as a base to our research, giving us an idea of what features 

were indeed more relevant for mood prediction for both arousal and valence. Nonetheless, 

tests were conducted to assess the relative importance of different features. 

To conduct these tests, Forward Feature Selection (FFS) was employed. It works 

generally as follows. Starting from an empty feature set, a model consisting of single feature 

(each feature in the set is iteratively experimented) is first obtained. Then, the feature with 

best performance is added to the feature set. This procedure is repeated until all features are 

added. When finished, the result is a ranking of the feature relevance and the “optimal” 

feature sub-set to use. 

 

2.5. Classification Methods: Support Vector Machines 
 

Statistical Classifiers are supervised machine learning procedures used to evaluate individual 

items based on their characteristics and correctly placing them into groups, using as a base a 

training set of previously labeled items. 

Although there are innumerous classification methods available, we will restrict this 

section to the one providing the best accuracy, as reported in the literature, e.g., [Yang et al., 

2008]: Support Vector Machines. 

Support vector machines (SVMs) is one of the most used classifiers today, composed by a set 

of related supervised learning methods used for classification and regression. 

SVMs work by analyzing a given a set of training examples, previously identified by 

belonging to a given category. An SVM training algorithm builds a model that predicts in which 

category a new example falls into. This functioning can be explained as points in space mapped 

so that the examples from the training set of different categories are divided by a clear gap 

that is as wide as possible, as demonstrated on Figure 17. This separation between classes 

does not need to be linear. The new, unclassified, examples are then mapped into that same 

space and predicted to be of a determined category based on which region of the gap they fall 

on. 

There are two main categories for support vector machines: Support Vector 

Classification (SVC), used with classes or categories as exemplified in the picture below, and 

Support Vector Regression (SVR), which are used for linear regression, to train and predict data 

using real values as annotations (for example, arousal and valence values instead of classes 

representing the four quadrants for example). 
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Figure 17: SVM – Examples separated by the maximum margin (H2) 

 

2.6. Existing Frameworks / Platforms 
 

Even though MIR and MER are relatively new areas of research, some work has already been 

done related to feature extraction and audio analysis tools, providing us with frameworks able 

to simplify audio processing tasks and allowing for more advanced tools to be created based 

on them. Taking this into consideration, we will approach here three of the most important 

frameworks to the date, the ones considered to be of highest interest for this work. Still, the 

reader should note that there are a lot more than these 3, with different ambits and goals, so 

names like Psysound10, CLAM, MK2 and others should also be taken into consideration in 

future researches.  

 

2.6.1. JAudio 
 

jAudio11 is a software package started in 2005 at McGill University for extracting low and high 

level features from audio files as well as for iteratively developing and sharing new features. 

The initial idea was to provide a framework to eliminate the effort in calculating from the 

signals, providing by default a wide range of analysis algorithms suitable to MIR tasks. To 

complement this and decrease the slope of the learning curve, the application also provides an 

easy to use graphic user interface (GUI), making feature selection and audio processing 

straightforward. Batch processing and other features are also provided via a command line 

interface, making it possible to create desired user scripts. The output is obtained done in 

Weka's ARFF format or the ACE XML file, to be later processed with machine learning 

                                                           
10

 http://psysound.wikidot.com/ 
11

 http://jmir.sourceforge.net/jAudio.html 
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framework such as ACE. jAudio is an open source project currently developed using the Java 

language, which makes it slower and heavier than some of the alternatives but also portable. 

Some of the positive aspects are the high number of audio features available and the 

portability. 

 

2.6.2. Marsyas 
 

Marsyas12, or Music Analysis, Retrieval and Synthesis for Audio Signals, is a software 

framework developed for audio processing with specific emphasis on Music Information 

Retrieval applications. It has been designed and written by George Tzanetakis with the 

collaboration of students and researchers from around the world. It was a pioneer in the area, 

being one of the first frameworks in MIR. Marsyas has been used for a variety of projects in 

both academia and industry, and it is known to be computationally efficient, due in part to the 

fact of being written in highly optimized C++ code (MIREX 2008 results13). It is an open source 

framework, accepting contributions for all developers willing to help, and is capable of 

outputting results to the Weka’s ARFF format. The native integration with Qt14 makes it also 

possible to create full applications with GUI. 

Some of the least polished aspects are the lower number of audio features when 

comparing to the alternatives and its weak documentation. Another verified problem is its 

complicated interface and syntax to build and control the audio processing networks. 

 

2.6.3. MIR ToolBox 
 

The MIR toolbox15 is an integrated set of functions written in Matlab, that are specific to the 

extraction of musical features such as pitch, timbre, tonality and others. The project is 

designed in a modular way, where the different algorithms can be decomposed into smaller, 

elementary functions and mechanisms. This approach allows users to interact with these 

minimal blocks and combine them in different and original ways to generate new features.  

Batch processing of several audio files or even folders is possible. The great number of 

low and high-level features combined with the adaptive syntax to create new functions and 

also the existing output methods, allowing not only to export information but also to have 

graphic visualization, makes this a great framework. The provided documentation is good and 

also something to take into consideration, especially when compared with the other 

frameworks. On the less bright side of the framework are its dependencies, among which 

                                                           
12

 http://marsyas.sness.net/ 
13

 http://www.music-ir.org/mirex/2008/index.php/Audio_Music_Mood_Classification_Results 
14

 http://qt.nokia.com/. Qt is an excellent cross-platform application and UI framework, with an LPGL 
licensed version, enabling the creation of portable applications across Windows, Mac, Linux/X11, 
embedded Linux, Windows CE and Symbian without rewriting the source code. 
15

 https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox 
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stands out obviously MathWorks’ Matlab16 and MathWorks’ Signal Processing Toolbox17, due 

to the fact of being commercial products. 

 

2.6.4. Frameworks Comparison 
 

Following, a small comparison of the frameworks will be presented, with emphasis on the 

available features (Table 4), classifiers (Table 5) and also the most relevant technical aspects of 

the project (Table 6). 

 

Implemented Features 

Feature 
Feature 

class 
jAudio Marsyas 

MIR 
toolbox 

Others 

Fraction Of Low Energy Frames intensity x    

Less-Than-Average Energy intensity x  x  

Root-Mean-Square Derivative intensity x    

Root-Mean-Square Energy intensity x  x  

Root-Mean-Square Variability intensity x    

Pitch (F0) pitch  x x x 

Strongest Frequency Via FFT 
Maximum 

pitch x    

Beat Sum rhythm x x   

Rhythmic Fluctuation rhythm   x x 

Strength Of Strongest Beat rhythm x  x  

Tempo rhythm x x x x 

Attack Slope timbre   x  

Attack Time timbre   x  

High Frequency Energy (Brightness) timbre   x x 

Inharmonicity timbre   x  

Linear Prediction Reflection 
Coefficients 

timbre x *   

Linear Spectral Pairs timbre  x   

Mel-Frequency Cepstral 
Coefficients 

timbre x x x x 

Sensory Dissonance timbre   x x 

Spectral Centroid timbre x x x x 

Spectral Crest Factor timbre  x   

Spectral Flatness Measure timbre  x   

Spectral Flux timbre x x x x 

Spectral Peaks Variability 
(Irregularity) 

timbre x  x x 

Spectral Roll Off timbre x x x x 

                                                           
16

 http://www.mathworks.com/products/matlab/ 
17

 http://www.mathworks.com/products/signal/ 
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Strongest Frequency Via Spectral 
Centroid 

timbre x    

Zero Cross Rate timbre x x x x 

Zero Cross Derivative timbre x    

Harmonic Change Detection 
Function 

tonality   x  

Key (Tonal Center Positions) tonality   x x 

Modality tonality   x x 

Tonal Centroid tonality   x  

Musical Content Features -  x   
Table 4: Available features in each framework 

(* LPRC is obtained from Linear Prediction Cepstral Coefficients (LPCC), which is supported by 

the framework.) 

 

Implemented Classifiers 

Classifiers jAudio Marsyas MIR toolbox 

K-Nearest-Neighbour  x x 

Gaussian Mixture Model  x x 

Support Vector Machines  x*  
Table 5: Classifiers available in each framework 

(* Marsyas does not support SVRs) 

 

Technical Aspects 

 Features Classifiers Interface Performance Language Documentation 

jAudio ~30 / 139 0 GUI low Java Unknown 

Marsyas ~30 3 
CLI, source 

code 
high C++ Weak 

MIR 
toolbox 

~40 3 
Adaptative 

syntax 
low Matlab Good 

Table 6: General details of frameworks studied 

 

Although having the lowest number of implemented features by default (something 

that can be changed by implementing needed ones) and lacking a good documentation that 

would be helpful in the initial phase, Marsyas was the framework used due to its much higher 

computational performance (MIREX 2008), to the fact that it was written in C++, integrated 

with Qt and independent of other commercial software. jAudio has the highest number of 

features, however many of them are statistical features, like means and standard deviations, 

obtained from other features. 
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2.7. Test Collections and Evaluation Procedures 
 

Evaluation of results and system performance is essential to verify possible errors, to tune 

settings and especially to measure the application accuracy. To this end, a test collection is 

needed. The primary aspects that make a good and useful test collection for this project are: 

 Number of music pieces – a low number of songs can compromise the training and 

testing results. 

 Music genres available – it is better to have various genres, measuring how the system 

performs globally. Usually few genres or just one can lead to the creation of systems 

that are too specific or just perform well inside that genre. 

  Geographical location – We have a global world with different musical tastes between 

regions and emotions are also something very subjective, not only from person to 

person but also between cultures. A database featuring songs from different cultures 

and not only western could be valuable to study how the system performs. 

 Annotation methods – The methods used to annotate songs are important, if possible 

made by more than one person, since having a good, reliable collection is fundamental 

to the entire testing phase. 

 Distribution of songs – it is essential to have a uniform number of songs in each 

category. In our case, to have a similar number of pieces in each of the four Thayer’s 

quadrants. 

 

Taking the previous points into consideration, we decided to use a data collection and 

annotations kindly provided by Yi-Hsuan Yang, which was previously used in [Yang et al., 2008]. 

The dataset consists of 194 clips of 25 seconds each (in WAV PCM format,  22050 Hz sampling 

rate, 16 bits quantization, mono), most being of Pop genre songs selected from Western, 

Chinese and Japanese albums. The authors describes the dataset as being uniformly 

distributed (48/49 in each of the four quadrants), with each clip expressing a clear dominant 

mood. Clips of 25 seconds only are used instead of entire songs due to the fact that mood 

changes tend to occur during entire songs. These 25 seconds were manually trimmed to better 

represent the music and its dominant emotion. Later, complete songs may be used to better 

test mood tracking accuracy.   

The annotation process was complex and involved 253 volunteers with several 

backgrounds (from regular people to philosophy and music experts), analyzing ten clips each. 

The subjects were asked to listen and label ten random clips from the collection, giving values 

between -1.0 and 1.0 to arousal and valence, according to the emotion evoked by the music 

clip. Not only melody but also lyrics and singing (vocal) of the song were taken into 

consideration by subjects, who were given the opportunity to hear the clips more than one 

time. 

The consistency of the ground truth was evaluated by averaging subjects’ annotations. 

For each song, a larger standard deviation means a less accurate annotation, due to 

subjectivity or mood ambiguity in the song. These calculations for arousal / valence values 
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resulted in a deviation of about 0.3, with 95% confidence interval of ±0.2, which is an 

acceptable value and shows the subjectivity issues that exist when dealing with emotions. In 

addition to this test, a second one was conducted that consisted in repeating the process with 

22 of the same subjects, retesting the same songs two months later in order to guarantee the 

reliability of the results. The large the difference was, the less repeatable the subjective test 

could be. The results showed that more than half of the annotations varied only in 0.1, 

confirming that the test is repeatable. 

Concluding, the annotations are reliable, nevertheless showing a small degree of 

inconsistence on the ground truth, something that is reasonable due to the subjectivity 

existent in music perception and emotions in nature. 

However, after annotating the songs in the 4 quadrants with specific AV values, it turned out 

that some clips moved to different quadrants. For example, songs originally labeled as 

belonging to the second quadrant had positive valence values, moving them to the first 

quadrant. As a result, the initial requirement for a balanced dataset was violated, resulting the 

distribution in Table 7. This uneven distribution has clear impact in the creation of the mood 

classification model. Unfortunately, this issue was not mentioned in [Yang et al., 2008].  In 

addition, some songs were annotated with zero arousal or valence. Hence, the songs between 

two quadrants (having a value of 0 for arousal or valence) were attributed to the quadrant 

they were more probable to be in according to the verified annotations (e.g. a song between 

quadrants 1 and 2 were attributed to 1). In Table 7, “Other” represents songs that are exactly 

placed between two quadrants, by having a value of zero for arousal or valence. “Match” 

represents the number of songs placed by Yang that were indeed correct. 

 

Quadrants Yang Annotation Annot (%) Match Match (%) 

1 48 54 27,84% 36 75,00% 

2 48 22 11,34% 17 35,42% 

3 49 51 26,29% 16 32,65% 

4 49 49 25,26% 9 18,37% 

Other 0 18 9,28% - - 

Total 194 194 100,00% 78 40,21% 

Table 7: Songs per quadrant: Yang vs. real annotations 

 

 Since no annotations for mood changes were available, they had to be created in order 

to evaluate mood tracking results. To create the dataset, 57 full songs of the 194 titles 

presented in Yang collection were obtained, leaving out the oriental songs that were 

impossible to gather.  Annotating manually the mood changes over songs is a difficult and time 

consuming task. Taking that into consideration, we opted to use manual annotations made by 

two volunteers   (students at our department, with music experience), where they marked the 

quadrant changes over a song as exemplified in Figure 18. This process was done for the entire 

dataset and the matching rate between each pair was calculated, by counting the time both 
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identified the same quadrant. For testing purposes only the ones with a matching ratio of 80% 

or higher, 29 songs, were used. 

 Clearly, the current annotations are not sufficient. To overcome the problem, the 

number of songs of the dataset will be increased and more volunteers will be used to manually 

annotate mood changes.  

 

 

Figure 18: Tracking annotation example 

 

2.8. Followed Approach 
 

After a long research in the area, we finally had sufficient knowledge to choose and detail an 

approach to be followed in the scope of this project – mood tracking. The main goal of the 

project was not to innovate in terms of features and algorithms but to create a robust base of 

work that can be used later for future innovation. Hence, an approach similar to the one 

followed in [Yang et al., 2008] was followed. 

Based on that work, Thayer’s model of mood was used, having a continuous view of 

emotions instead of categorical, plus the simple arousal/valence axis system gives it an 

advantage comparing to others.  

Feature extraction was carried out using the Marsyas framework. Although complex 

and sometimes unstable, it showed to be fast and with a good variety of features.  

For the classification part an extra library was added – libSVM18. This C library provides 

support for SVMs and SVRs and proved to be very powerful, bridging the gaps of Marsyas in 

this aspect (Marsyas does not support SVR, as mentioned previously).   

Several tests were conducted with the developed tool to measure important aspects 

as speed, computer needs, accuracy and feature relevance. Some limitations were also 

identified as well as suggestions and mechanisms to surpass them. 

The developed application is composed of 3 distinct parts: server, client and 

backoffice. Currently, a functional prototype of both server and client exists (alpha version), 

letting the user visualize a song waveform, highlighting mood changes across the four 

                                                           
18

 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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quadrants using different colors. It will also show the distribution of all songs on the DB, using 

an AV plan as well as selected song details. Other features will be implemented in the near 

future by me and João, related with playlist creation by either selecting a point or path on the 

AV graph. 
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3. Implementation 

 

In this chapter I will present the main decisions about the implementation of the audio analysis 

core for feature extraction, classification and tracking, as well as the server and client 

components of the mood detection application. More details about the software engineering 

process can be found on the appropriated appendix.  

3.1. Mood Tracking 
 

3.1.1. Feature Extraction 
 

Marsyas was used to extract features from the audio files. It is powerful and fast and at the 

same time one of the few free C++ alternatives. The overall Marsyas architecture is described 

in Appendix C. 

The feature extraction process is based on source code of the Marsyas examples, using 

two different MarSystems19 networks to extract features depending on the desired result. 

There are innumerous MarSystems available, each one with a different function. 

The most relevant composite MarSystems are: 

 Series – the most basic structure for connecting MarSystems (in Series, as the name 

implies) into dataflow networks. 

 Parallel – receives an input with multiple observations (i.e. channels) and sends each 

observation to a different MarSystem where calculations run in parallel. 

 Fanout – similar to Parallel, but takes a single observation and sends a copy of this 

observation to all the MarSystems inside of it. 

 Accumulator – accumulates results of multiple tick20 process calls to the internal 

MarSystem. If its nTimes control is set to 10, for each tick received by Accumulator, 10 

ticks will be sent to its internal MarSystems. 

 

To obtain a unique value for each feature that represents the entire song, normally 

called a single vector of features, the network described on Figure 19 is used. For mood 

tracking and similar usages there the need of feature values in small time intervals, usually a 

                                                           
19

 In Marsyas terminology the processing nodes of the dataflow network are called MarSystems and 
provide the basic building blocks out of which more complicated systems are built. Essentially any audio 
processing can be expressed as a large composite MarSystem which is assembled by appropriately 
connected basic MarSystems. 
20

 A tick represents an instant of time. Each time the tick() function is called a data slice is propagated 
across the entire dataflow network. 
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group of N windows. This is achieved with the network in Figure 20. An extra independent 

network is also used when extracting a single vector to calculate beat histogram features, 

giving 18 additional results. 

 Analyzing the two networks, the main difference that permits a different behavior is 

the usage of an Accumulator MarSystem in the single vector approach, which encloses the 

Series network responsible for feature extraction and processing. This MarSystem accumulates 

results of multiple tick process calls to its internal MarSystems, generating output only once 

when all the results are accumulated, as described in [Percival et al., 2009]. 

 As for the features supported, we tried to use all features available in Marsyas. The list 

is composed by the following timbral features, as well as pitch and beat histogram features 

(currently only for the single vector approach): Beat Histogram Features, Centroid, Chroma, 

Flux, LPC derived Cepstral coefficients (LPCC), Linear Spectral Pairs (LSP), Mel-frequency 

Cepstral Coefficients (MFCC), Pitch Histogram Features, Rolloff, Spectral Crest Factor (SCF), 

Spectral Flatness Measure (SFM), Tempo and Zero Crossing Rate. These features represent a 

total of 218 values for tracking and 454 for the single value due to the extra standard deviation 

and mean calculated by the song statistics Fanout MarSystem (218 x 2), plus the extra beat 

histogram features composed by 18 values. 
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MarSystem Networks used for feature extraction 

 

Figure 19: Feature extraction network (single vector) 

 

 

Figure 20: Feature extraction network (continuous/tracking) 
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Data Normalization 

Before being used in other tasks, the feature values need to suffer one last 

transformation. This transformation consists in scaling all values to be of similar magnitude. 

Skipping this step would lead to numerical problems resulting from different feature ranges, 

which would seriously compromise the training and testing results. 

To obtain the normalized result,   , of an original feature value,   , we apply  equation (14). 

The minimum (    ) and maximum (    ) values for each feature are stored during the 

extraction.   

           
        

         
  (14) 

 

  and   are the lower and upper bounds between which the features will be scaled. On our 

tests we normalized features to the [0, 1] interval (  = 0 and   = 1). 

 

3.1.2. Classification 
 

AV Classification 

In the classification process a different library – libSVM – was used. The reason behind 

this choice was the lack of support for regressions and real number annotations in Marsyas. 

Although the framework uses the same library to classify when using the SVM MarSystem, it 

only supports SVC and treats annotations as classes. Adding support for SVR would not be 

straightforward and as a consequence we decided to use the original library itself, which was 

easier to use and gave us much more freedom. 

 To train the SVM model we used the Yang dataset composed of 194 audio files 

annotated with arousal and valence values. The tests were conducted running 20 repetitions 

of a 10-fold cross validation, where the songs were divided into ten subgroups, using 9 groups 

to train and one group to test. This process repeated ten times, guaranteeing that all groups 

(and consequently all songs) were used for testing and for training.  

The predicted results for each song arousal and valence were averaged and used to 

calculate several statistics: 

 

Sum-Square Error (SSE) – measuring the total deviation of the predicted values from 

the original annotations (15). 

              
 

 

   

  (15) 
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where    is the annotation and     the predicted value. 

Total Sum of Squares (SST) – measuring the deviation of the each annotation to the 

mean value of the annotations (16). 

              

 

   

  (16) 

  

where    is the annotation and     the average of all annotation values. 

  

Root Mean Square Error (RMSE) – an estimate of the standard deviation of the 

predicted values (17).  

      
   

 
  (17) 

 

R2 statistics – used to measure how successful the trained model is and how it fits our 

training and test data (18), with results near 1 meaning the model fits the data perfectly. 

      
   

   
  (18) 

 

Overall AV classification accuracy is provided by the R2 statistics, for the sake of 

comparison with Yang et al.’s results. 

 

Quadrant Classification 

As our mood tracking annotations only offer quadrant information (AV pairs were not 

acquired in the subjective annotation task - see Section 2.7), a model classification into the 4 

Thayer’s quadrants must be obtained. Thus, to create the SVM model, instead of using arousal 

and valence values directly, we transformed these values to quadrants, using them as classes 

to train a SVC instead of an SVR.  

Using this strategy, the entire 194 song clips were used to train the classifier, which 

was later used to predict the quadrant changes for the complete songs. 

Model accuracy was computed as the percentage of correctly classified music clips. 

Confusion matrices are also provided. 

 

Forward Feature Selection 
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Feature selection is an important step to improve experimental results. Until know, 

tests were done with the entire feature set available at the time. However, this introduces the 

problem of using features that are not interesting to the subject, introducing unneeded data 

and inducing the classifier in error. There is a need to analyze features relevance and the 

optimal feature set for our problem. 

To achieve this, we used Forward Feature Selection (FFS), a feature selection algorithm 

that consists in the following steps, starting with an empty “optimal set”: 

1. Pick one of the remaining features. 

2. Train a classifier using the optimal set plus the chosen feature. 

3. Test the previously trained classifier and store the results. 

4. Repeat for each one of the remaining features. 

5. Add the best feature to the end of “optimal set” list. 

6. Repeat the entire procedure until no remaining features are left 

By using the described algorithm, a ranking of the best features, ordered by relevance, 

was obtained. The procedure was repeated using different groups of songs for training and 

testing and the rankings were averaged (Figure 21). The entire FFS algorithm was repeated 6 

times and the feature rankings accumulated to form a global ranking. 

 

 

Figure 21: Forward Feature Selection algorithm 

 

3.1.3. Tracking 
 

Mood tracking implementation was in part similar to the classification process 

described earlier. The major differences are the usage of a different feature extraction 

network, as well as the training and classification processes, which were conducted in small 

song segments (analysis windows) representing intervals of milliseconds, instead of the single 

vector approach. In addition, the output of each segment is a quadrant instead of an AV pair, 

as mentioned above.  
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 The size of these small fragments or chunks of data is defined by the number of 

samples that constitute the analyzed window. Several strategies were approached in order to 

test and understand the influence of these parameters on the tracking accuracy. For the 

window sizes, several values, ranging from 512 to 65536 (23 to 2970 milliseconds for songs 

with a frequency of 22050Hz) were tested to measure the influence of them on the results. 

Experiments with different memory values for the Texture Stats21 MarSystem were also done. 

This parameter is set to 40 by default and influences the way features are calculated, serving 

as a memory, in which the last N feature vectors are summarized. 

Other experiment was to compare the influence of window size, e.g., big windows 

versus averaging the feature vectors of several small windows. For example, calculating the 

accuracy using the average of 8 1024-sample windows and with an 8192-sample window. 

 

Smoothing 

One last step used in our experiments was smoothing or noise reduction. The idea is to ignore 

mood variations on a tiny time space that may not be significant. This is done by, on a 

quadrant change, checking its duration,  , and the quadrants before,  , and after,  , the 

current one. If the quadrants before and after the current one are similar (   ) and the 

duration,  , of the current one is less than the defined threshold,  , (   ), then the current 

quadrant change is ignored.  

The results before (Figure 22) and after (Figure 23) applying this process are shown in 

the pictures below (with       seconds). 

 

 

Figure 22: Mood tracking example without smoothing 

 

Figure 23: Mood tracking example with smoothing 

                                                           
21

 A texture window analysis MarSystem, used to calculate the mean and standard deviation based on 
the last memSize windows. This composite MarSystem uses the following MarSystems: Series, Memory 
– a circular buffer that holds the past memSize observations, Mean and StandardDeviation.  
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3.2. Database 
 

An SQL database is used by the server to store all information about the songs and 

classification. Although managed through the backoffice application, all operations on the 

database, from querying data to updates and additions of new information is done by the 

server itself. These operations are conducted using Qt SQL libraries such as QSqlDatabase and 

QSqlQuery. Using this simplifies the process of dealing with connectors and provides support 

for different database management systems. Also, the server will be usable with various 

engines, from a simple SQLite file to MySQL, PostgreSQL, Oracle, Access DB files or any DB 

supporting ODBC (Open Data Base Connectivity protocol). On the current prototype only 

SQLite is supported, with preliminary support for MySQL. 

 The DB was designed with the future in mind, supporting the current needs but also 

the ones that will appear in the future, such as various mood models of different types 

(categorical or dimensional), user accounts, lists of artists, albums, genres, features and 

classification profiles, saving several classification and tracking values for the same song with 

different combinations of features and classifiers and others. The current result is represented 

below with the Entity-Relationship Model, something that might suffer small updates before 

the application is finished. 
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Entity-Relationship Model 

 

 

Figure 24: Entity-Relationship Model
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3.3. Client Application 
 

The client application was implemented by another element of the team (Lic. student Luís 

Cardoso), after the requirement analysis developed by Professor Rui Pedro Paiva, João 

Fernandes and myself, using the Qt platform. As a result, it is portable and can be used in any 

of the platforms supported by Qt. 

 The first version is a prototype, supporting only the features available in the server 

(the component pertaining to this MSc thesis). Currently it can be used to check the 

distribution of the songs over Thayer’s model, ask for details on each song and also play the 

selected song, which, at the same time, shows the quadrant changes (highlighted in different 

colors) in the sound wave graph. 

 

Main Window 

 Using it is relatively straightforward. After opening the application the user will need to 

insert the server address and port in order to establish all communications. Once this info is 

inserted, the DB Map (visual map of all songs in the database) can be requested, as shown in 

Figure 25. Each point represents a song and the user can use mouse over events to check the 

song name. The user can zoom and interact with the map (draw traces, click songs, etc.). In the 

future, filter and search options will be also available to help view large databases. The 

preference settings tab is not available yet, but it will offer the possibility to change settings 

like requesting the DB Map for different classifiers. 
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Figure 25: Client Application main window 

Song Details  

When a song on the DB map is selected a request for the details of that song details is sent. 

The answer is then parsed and displayed on the Song Details form. This form shows all the ID3 

tag information stored for that song, as well as the soundwave graph and mood tracking data, 

if available. The song can then be played and the progress will be marked with a black line on 

the wave plot, different colors represent different quadrants identified for the current selected 

profile as demonstrated on Figure 26. 
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Figure 26: Client Application Song Details dialog 

 

3.4. Backoffice Application 
 

The backoffice is the application that will serve as a front end to control and administrate the 

server. It is currently under construction by João, following the requirements developed by the 

same people as above. Its work mode will be somehow similar to the client application, in that 

it will work by sending requests and parsing the responses from the server to update its 

widgets with received data. The implementation of a prototype of this application is not 

finished, nonetheless a few screen shots of its interface will be listed to give an idea of its work 

mode and how it will look like. 

 The first image shows the backoffice main window (Figure 27). After logging in, the 

user will view this dialog where the main server settings and information is listed. Additionally, 

access, activity and error logs can easily be accessible in order to guarantee that everything is 

working as expected. 



63 
 

 

Figure 27: BackOffice main screen 

 

The following image displays the Edit Profile dialog screen (Figure 28). Here the administrator 

may edit all the parameters that constitute a classification profile, particularly changing 

features and the classifier. Changing profile settings will make the current classification and 

tracking records of that profile became invalid. As a consequence all songs need to be 

processed (or the records dropped). 

 

Figure 28: BackOffice Edit Profile dialog 
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3.5. Server Application 
 

The server application answers the queries made by clients, retrieves song information and 

entire playlists, as well as manages the entire songs and users’ database. It can be viewed as 

various distinct modules: database management, audio processing, client communication and 

others. In the table below (Table 8) the summary of requirements for the server application is 

presented (for further details of requirement analysis, see Appendix A): 

 

Requirements Details 

User accounts - Create account 
- Remove account 
- Block / Ban account 
- Edit profile 
- Encrypt sensible user information (password at least) 

Client communication - User authentication 
- Process user queries 
- Return query results (m3u, song info, …) 
- Stream/send songs 
- Receive songs from users/administrators 
- Remove song from DB 
- Change server settings (administrators) 

Database management - Create database 
- Drop database 
- Delete database 
- Insert new songs information 
- Update / edit existent information 
- Select / browse songs information 

Audio processing - Down sample songs 
- Extract audio features 
- Apply classifiers 

Table 8: Server application requirements 

 

We have implemented a prototype version of the server application. Currently, this 

version serves as a concept of how the entire system will work in the future (recall that playlist 

generation is part of another MSc thesis, which is still under work), showing part of the desired 

functionalities. 

The main functions of the server are to communicate with the client and backoffice 

applications, as well to process audio files and interact with the database. Although it does not 

have a GUI, the MOOD Server is built using the Qt framework. The main reason for this is the 

support from the framework for non-GUI features like SQL database access, XML parsing, 

thread management, network support, and a unified cross-platform API for file handling, great 
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advantages when building what should be a cross platform application, as well as the 

integration with the other Qt-based applications (Client and backoffice). 

 

Communications 

To accept connections from both types of users, the server has two independent 

sockets running in different ports, one for the client application and the second for the 

backoffice, by implementing a subclass of the QTcpServer class. Both use threads to handle 

requests from different clients simultaneously, creating a new one to respond to each client 

connection (and request). 

Messages are exchanged through a QTcpSocket, where clients are expected to send 

requests immediately after establishing a connection. A custom block-oriented protocol is 

used to transfer data as binary data blocks through a QDataStream instead of a QTextStream. 

Each block consists of a size field followed by that amount of data. All the data blocks must 

start with a parameter identifying their type of request or response in order to be correctly 

processed. The remaining data depends on this parameter. Both client and server need to 

know and use all the blocks being sent and received in order to correctly parse the data that 

comes in the form of an array of bytes (QByteArray). Some of the used data blocks are 

described below. 

  

Data Blocks 

All used blocks start with the size of the block (quint32) in order to know how much data we 

should receive before parsing the message, followed by a number (quint16) that identifies the 

message type. 

 

 A data block similar to the image above (Figure 29) is received by the server when a 

client asks for the database map, where the field request_type will have the value 1. 

 

Figure 29: Request DB Map data block 

 

 A request for song details is represented by the block below (Figure 30). Here, the 

request_type will have the value 2. The id_song parameter, as the name indicates, is the id of 

the song to query. 
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Figure 30: Request Song Details data block 

 

 After receiving a request for the DB map, the server will query the database and return 

the following data block (Figure 31). In this block, response_type will be 1. The songs_number 

parameter represents the total number of songs that are described. The rest of the block has 

song data (id, name, arousal and valence) repeated a total of songs_number times. 

 

Figure 31: Response DB Songs Map data block 

 

The block to send details of a given song is presented in Figure 32. All the field names 

are clear about what they represent. The response_type field will be 2. 

 

Figure 32: Response Song Details data block 
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Settings 

All the configuration parameters of the server are stored on an INI file (settings.ini) in a human 

readable format so they can also be easily edited. The settings stored go from the ports and 

network interfaces used (which define if the server works only at localhost, LAN or Internet), 

all database settings, path to the songs directory and so on. 

The file is stored using QSettings class, which provides a persistent platform-

independent way of storing application settings. This information is often stored in the system 

registry on Windows, and in XML preferences files on Mac OS X. On Unix systems, in the 

absence of a standard, many applications (including the KDE applications) use INI text files. To 

avoid writing to the windows registry, we chose to use an INI file for all systems.  

 

Finally, an extra detail is the usage of Signals and Slots to communicate between 

objects, something that is usually done in other frameworks by using callbacks. The signals and 

slots mechanism is a central feature of Qt and probably the part that differs most from the 

features provided by other frameworks. A signal is emitted when a particular event occurs and 

a slot is a function that is called in response to a particular signal. One example of this in our 

project is the incomingConnection() slot, that is activated by QTcpSocket, which emits a signal 

every time a new connection is established. 
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4. Experimental Results 

 

After having implemented the audio analysis and processing logic described in the previous 

chapter, various groups of tests were conducted, assessing many different parameters for 

tracking and classification in order to obtain results that would allow us to evaluate the system 

accuracy and under which parameters and circumstances it performs best. 

4.1. Annotations 
 

Annotations are one of the bases of this work. They have crucial importance on the results, as 

they are used in the classifier training process and to measure the results. In this work we used 

arousal and valence annotations kindly provided by Yang [Yang et al., 2008] for training and 

classification testing. To test and evaluate the mood tracking, a different set of quadrant 

annotations, made by two volunteers, was used. 

 

4.1.1. Yang Annotations 
 

These arousal and valence annotations were made from 25 seconds clips that better expressed 

the emotion present on each song, for a total of 194 songs. The songs were selected by Yang, 

trying to have a balanced number of songs for each of the four existent quadrants (48 to 49). 

However, there are some problems with them that may have a negative influence on the 

results. 

 

Proximity to the origin of the graph 

One of the main drawbacks with Yang annotations is their distribution over the Thayer’s plan. 

According to the same model, emotions are always placed near the outside of the graph, 

where the reference values are relevant, with a high positive or negative valence and arousal. 

 Nevertheless, placing these annotations on the Thayer’s model of mood reveals that a 

high number of songs are close to the graph origin as exemplified in Figure 33. Here, we can 

see a great accumulation of annotation points near the center, with 47 within a distance of 

0.25 (inside the red circumference) and 140 within 0.50 (orange circumference) as listed in 

Table 9. 
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Norm Songs Sum 

[0 , 0.25] 47 47 

]0.25 , 0.5] 93 140 

]0.5 , 0.75] 47 187 

]0.75 , 2] 7 194 

Table 9: Yang Annotations – distance to the origin 

 

 

Figure 33: Yang Annotations placed on the Thayer's model 

 

 

Unbalanced Song Distribution 

One of the concerns taken into account by Yang when compiling his test collection was to have 

an equal number of songs for each quadrant. Therefore, he picked 48 to 49 songs for each of 

the four quadrants based on his opinion and feelings. However, the annotations demonstrated 

that in many cases the songs do not belong to the initial quadrants in subjects’ opinion, thus 

making the distribution unbalanced.  This problem is demonstrated in the picture (Figure 33). 

The four different colors used represent the four different quadrants. It would be expected, 

according to Yang division, to see points with the same color grouped in the same quadrant. 

Instead all colors are scattered between all quadrants, with the second having less songs than 

any other as detailed in Table 7, repeated here for simplicity (Table 10). In the refereed table, 
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“Other” represents songs that are exactly placed between two quadrants, by having a value of 

zero for arousal or valence. “Match” represents the number of songs placed by Yang that were 

indeed correct. 

 

Quadrants Yang Annotation Annot (%) Match Match (%) 

1 48 54 27.84% 36 75.00% 

2 48 22 11.34% 17 35.42% 

3 49 51 26.29% 16 32.65% 

4 49 49 25.26% 9 18.37% 

Other 0 18 9.28% - - 

Total 194 194 100.00% 78 40.21% 

Table 10: Songs per quadrant: Yang vs. real annotations 

 

4.1.2. Tracking Annotations 
 

To evaluate mood tracking results, the existing annotations were not enough, since we needed 

details about mood changes during the entire songs. To solve this problem, two volunteers 

listened to 57 full songs of the 194 (oriental songs were excluded) and registered changes 

between quadrants for the entire songs duration. The new annotations were analyzed and 

compared in order to measure the matching ratio between volunteers. To execute our 

experiments only 29 songs, where volunteers agreement was higher than 80%, were used. 

 The tracking annotations collected by us also have some flaws that were exposed 

during tests. 

 

Number of Subjects 

 The annotations are not really significant of a population since they were created by a really 

low number of persons – two. With so few annotations there is no way to properly distinguish 

when there are clear mood changes, where most of the subjects would agree and few 

disagree, or when some songs don’t generate consensus at all and all subjects disagree. The 

number of subjects is insufficient to have a clear majority even when a few disagree. 

 

Unbalanced Song Distribution 

Similar to Yang’s situation, the selected songs were mostly from the first quadrant according to 

Yang´s annotation, as described in Table 11. The optimal scenario would be to test the tracking 

algorithms with a group of songs equally distributed to verify the accuracy for each one of the 

four existent quadrants. 
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Quadrants All Match +80% 

1 23 11 

2 13 6 

3 10 6 

4 5 2 

Other 6 4 

Total 57 29 

Table 11: Mood tracking annotations distribution according to Yang 

 

Differences between tracking and Yang annotations 

One last problem present with the mood tracking annotations is that, in some cases, there 

seems to be an inconsistency when compared to Yang’s annotations, which cannot be further 

investigated due to the small population (and annotations) available. 

 As explained, Yang’s annotations were done by at least 10 subjects for each song, 

evaluating 25 seconds clips that better represented each one. Given that, it would be expected 

that each mood tracking annotation had segments that matched Yang’s annotation. However, 

this does not always verify, with several tracking annotations alternating between two 

different quadrants but never coinciding with Yang’s values, as exemplified in Figure 34. In this 

example, the blue line represents Yang’s annotation. It indicates that, generally, the 10 

subjects used by Yang placed the clip in the second quadrant (e.g. angry), with negative 

valence (although very close to zero). However, the subjects responsible for the mood tracking 

annotations only detected segments of quadrants one (e.g. happy) and four (e.g. peaceful), 

never finding a negative valence in the entire song. Although this is possible, due to the 

subjectivity of the topic or cultural reasons, it still highlights one weakness of our process, 

already related above – the low number of subjects used. 

 

 

Figure 34: Annotation inconsistencies: mood tracking vs. Yang 

 

4.2. Global Classification 
 



72 
 

For global classification 20 repetitions of 10-fold cross validation tests were run. This ensures 

that all songs are used in different groups for training and testing. The final results for AV (SVR) 

are the average of all repetitions. Regarding quadrants classification (SVC), the results 

represent the quadrant predicted the most for each song. In the feature extraction process, 

512 samples windows were used with a memory value of 40. 

 

4.2.1. AV (SVR) 
 

To analyze the classification results, R2 statistics and RMSE were the choice (see 3.1.2. – 

Classification). 

 

Using all available features 

Tests using the entire feature set confirmed that arousal is in general easier to predict than 

valence, a fact confirmed by the R2 statistics. The R2 values reached 57.9% for arousal and 

3.24% for valence as shown in Table 12. Arousal results are similar to ones the observed in 

[Yang et al., 2009] but the valence value for R2 is way below the result of 28.1% from the same 

paper. The observed discrepancy for valence is a result of the feature set available in each 

experiment and the group of selected features to be used. Yang worked with several feature 

extraction frameworks, obtaining a wide range of features that are not available in Marsyas at 

this time. This affects specially valence since from the four most important features mentioned 

in [Yang et al., 2008], Marsyas lacks three of them (Spectral Dissonance, Tonality and Chord). 

We conducted a pilot study with the MIR Toolbox, which led to an R2 value of 25% for valence, 

thus confirming the lack of meaningful features in Marsyas. The second cause is related with 

the use of the entire feature set. Using all features may be decreasing the results especially for 

valence and reducing the accuracy of the model due to features that do not apply to the 

context of mood analysis. 

 

arousal valence 

SSE SST RMSE R2 SSE SST RMSE R2 

0.966816 2.34311 0.220108 0.57985 1.15312 1.1943 0.241297 0.0324472 

Table 12: Global classification results (all features) 

 

Looking at the placement of the predictions on Thayer’s model shows that all songs are 

gathered within the 0.50 circumference. It is also clear that the values predicted for valence 

have a very small variation (Figure 35).  

Suggestions to improve these results are: 
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 Add meaningful features, namely tonality, multiplicity, spectral dissonance and chord 

mentioned in [Yang et al., 2008]. 

 Use a feature selection algorithm (FFS), selecting the optimal feature set for both 

arousal and valence. 

 Experiment with different classification parameters and settings and check the 

importance of parameter selection for libSVM is described in [Hsu et al., 2010]. 

 Better annotations, balanced and far from the origin. 

 

 

Figure 35: Global predictions in Thayer's model (all features) 

 

 

4.2.2. Quadrants (SVC) 
 

The accuracy of these tests was measured with the number and rate of correct predictions. 

Since no regression was used there are no metrics to measure wrong predictions, only if the 

predicted classes (in this case, quadrant) were correct. 

 

All Features 
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The results obtained in this experiment were generally weak, considering the low granularity in 

use (only 4 classes). An accuracy of 47.42% was obtained, with 92 correct predictions in a total 

of 194 songs. No songs were classified as from quadrant 2 and 4. A fact that may be attributed 

in part to the unbalanced data set, especially for quadrant 2. The predictions distribution is 

showed with more detail on the confusion matrix (Table 13). 

 One reason for this result was probably the usage of all features, where many may not 

be useful for the subject lowering the accuracy of the classifier. 

 

Quadrants 
Annotations 

 1 2 3 4 
 

Predicted 

1 54 21 16 17 108 

2 0 0 0 0 0 

3 12 1 38 35 86 

4 0 0 0 0 0 

  
66 22 54 52 

 Table 13: Confusion matrix (SVC, all features) 

 

Forward Feature Selection 

 After testing with the entire feature set, the FFS algorithm described in chapter 3.1.2 was 

applied to calculate de features ranking, using 10% of the collection for testing. This process 

was repeated 6 times and the final ranking resulted in a list of features ordered by relevance.  

Following, the list was used to find the optimal number of features – the list which 

provided the best results. This was done by training and testing a classifier (using cross fold 

validation), starting with only the top feature and continuously adding the next feature, 

registering the results for each iteration, until all features were tested. 

The results indicated that the best value for accuracy, 48.95% or 95 correct predictions 

of a total of 194, occurred when using the top 383 features (Figure 36). This final list was then 

used to predict the quadrant for each song, using a 10-fold cross validation system and the 

most predicted quadrant for each song was saved.  

Comparing the confusion matrix from FFS (Table 14) with the previous one, referent to 

all features, we noted that few things changed, with only two incorrect predictions of the third 

quadrant songs being predicted correctly this time. 
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Figure 36: Features accuracy based on FFS feature ranking 

 

 

Quadrants 
Annotations 

 1 2 3 4 
 

Predicted 

1 54 21 14 17 108 

2 0 0 0 0 0 

3 12 1 40 35 88 

4 0 0 0 0 0 

  
66 22 54 52 

 Table 14: Confusion matrix (SVC, top 383 features) 

 

By analyzing the results obtained, we can speculate some probable causes for of the 

low accuracy and especially the weak FFS results. First of all, using the FFS with classification 

instead of regression means that the results will have less variation. For a small test set 

(composed of 20 songs), the results obtained with two features, even if one is superior, may 

not be enough to increase the accuracy by predicting correctly one more song, in contrast with 

using R2 values. These cases and also features with little relevance will result in many similar 

matching percentages for many features (e.g. 10/20), something that was verified in our test 

causing the first feature of this similar results list to be picked, while it may not the best of the 

set. Apart from the previous problem, the most obvious reason for the verified outcome is the 

unbalanced nature of our annotations. The set is clearly unbalanced in favor of the first 

quadrant, with 66 songs, 12 more than the second with most songs. This fact will create an 
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unbalanced SVC model and any feature, even if with little or no relevance, will have a naturally 

higher probability of being predicted with the quadrant 1 over any other. The described result 

is clearly confirmed by the line on the above graph, marking a result of 0.34 for the first 100 

features. It was verified that, at the beginning of FFS, the unbalanced model predicts the first 

quadrant to all songs with most if not all of the features, guaranteeing a result of 66/194. This 

continues and only after more than 100 features were added the results start to change, with 

predictions of third quadrant songs. 

With the optimal feature set of this experiment (383), it was also verified that all the 

predictions are between quadrants 1 and 3, with quadrant 4 being predicted few times during 

the cross validation and no predictions for quadrant 2, the one with the least songs. 

To improve the experiment, a bigger, balanced data set must be used, with an equal 

number of songs for each quadrant. Nevertheless, the experiment would probably be more 

relevant using AV values and R2 as measure. 

 

4.2.3. Tracking 
 

For mood tracking the results are based on the matching percentage between the songs 

predictions and the respective annotation. 

 

All Features 

The results for mood tracking when using all features were varied. For mood tracking several 

settings were tested as described previously in the “Implementation” chapter. Of these 

settings, window size in samples showed to be the most relevant one, followed by smoothing 

values. 

The best result obtained was 44.09%, using windows of 2048 samples. In the same way 

to what happened previously, we verified excellent results with songs when the tracking 

annotation was mostly in quadrant 1. On the other hand, the accuracy dropped to really low 

values every time the annotations marked quadrant four but especially quadrant two, since it 

was never predicted. 

  Similarly to what was suggested for global classification, there are several points where 

results can be improved: 

 A balanced data set that will allow a correct SVC training and also a well calculated 

feature ranking. 

 Improved tracking annotations, done with more subjects and over a higher data set. 

 Extra audio features, that showed to be good in mood classification and tracking 

problems, according to the literature such as [Yang et al., 2008]. 
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Matching results are available in Table 15. There, for different values of windows sizes 

in samples, the percentage of matching for each of the 29 tested songs is indicated. The last 

row indicates the average of all songs. 

 With these results we can conclude that smaller windows sizes tend to achieve a 

better matching percentage, with 2048 samples demonstrating to be the best value, as 

stated earlier. Both the discrepancy between obtained results and the average matching 

values could be higher with a better trained classifier and by using only the best features.  

 

 Mood Track Matching (winSize) mem = 40 
Song 1024 2048 4096 8192 16384 32768 65536 

1 91.41% 90.98% 91.35% 92.09% 85.06% 91.64% 91.64% 
2 90.47% 90.47% 90.47% 90.47% 90.32% 90.02% 89.43% 
3 52.69% 53.63% 53.09% 50.79% 51.31% 50.30% 55.28% 
4 89.57% 88.63% 89.39% 85.09% 82.22% 89.33% 89.33% 
5 80.09% 80.07% 80.07% 80.07% 80.07% 80.07% 79.63% 
6 76.84% 76.32% 74.85% 72.04% 81.54% 78.51% 78.51% 
7 79.90% 79.87% 80.49% 79.87% 79.87% 79.27% 52.64% 
8 95.40% 97.15% 97.15% 97.15% 94.44% 93.87% 86.04% 
9 85.07% 85.07% 85.07% 85.07% 85.09% 85.09% 85.09% 

10 91.85% 92.18% 92.18% 92.18% 92.18% 92.18% 91.92% 
11 7.11% 5.58% 7.17% 7.75% 7.75% 4.30% 0.00% 
12 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
13 5.89% 4.50% 2.42% 2.37% 1.28% 0.00% 0.00% 
14 0.75% 0.88% 1.13% 1.13% 0.00% 0.00% 0.00% 
15 45.70% 41.03% 40.86% 54.08% 38.75% 44.56% 53.89% 
16 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
17 45.75% 39.94% 27.39% 48.62% 53.82% 70.73% 79.27% 
18 0.24% 0.24% 1.95% 4.60% 9.67% 0.00% 14.15% 
19 27.08% 23.52% 25.45% 38.70% 26.02% 33.45% 19.00% 
20 3.08% 1.52% 3.40% 0.00% 0.00% 0.00% 0.00% 
21 37.75% 51.12% 57.06% 44.78% 14.91% 0.00% 0.00% 
22 56.45% 58.44% 41.21% 53.73% 53.09% 54.49% 94.38% 
23 40.21% 52.42% 74.17% 26.41% 0.00% 0.00% 0.00% 
24 3.57% 3.06% 2.50% 0.00% 0.00% 0.00% 0.00% 
25 55.67% 60.58% 58.22% 45.82% 38.66% 49.47% 26.14% 
26 6.90% 5.29% 2.70% 2.54% 0.00% 0.00% 0.00% 
27 19.97% 19.29% 18.55% 17.61% 13.31% 1.99% 0.00% 
28 30.56% 30.61% 26.15% 12.00% 8.00% 0.53% 1.06% 
29 45.30% 46.35% 48.23% 39.52% 37.05% 19.13% 13.39% 

Average 43.63% 44.09% 43.89% 42.22% 38.77% 38.24% 37.96% 
Table 15: Mood tracking results for different windows sizes 
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5. Conclusions 

 

At the end of the year we believe that most of the objectives for this project were achieved. 

Important research on MIR, MER and mood tracking was made and, although there is still work 

to be done, a functional prototype version of our mood application was produced. 

One of the most important accomplishments of the project was the knowledge 

acquired from the research, which happened during the entire year, but also from developing 

the application and experimenting with the different frameworks. A gradual learning process, 

as new ideas required a deeper knowledge about the frameworks, especially Marsyas. 

The main characteristic of this project was its diversity, covering vast areas of research 

but also interesting fields of software engineering as described in this thesis. The result is this 

work. The knowledge gathered, as well as the problems and solutions found during the year, 

are described here and serve as a valuable resource for future projects on the same field. 

Some ideas did not evolve as initially intended or did not attain the initial goals. Things 

such as a fully usable mood application and the classification and tracking system were not 

completed but the topics were analyzed in the dissertation, and the path is open to properly 

achieve these goals in the near future. 

Concluding, the project as a whole was a worthy experience and the results will be 

valuable to the evolution of the mood application and, therefore, to enrich the Department’s 

legacy. 

 

5.1. Future Work 
 

As described along the entire dissertation, the future work should be focused on improving the 

results of the classification and tracking system as well as concluding the mood server, client 

and backoffice applications. 

 To improve the experimental results there are several points that should be taken into 

consideration: 

 A bigger, balanced data set for classification with AV values, with these values being 

away from the origin. 

 Experiment and tuning the various settings on the classifiers. 

 Correctly usage of FFS, resulting in a lower number of high relevance features for each 

subject (quadrants, arousal, and valence). 

 Mood tracking annotations for a higher number of songs and, especially, done by more 

than two volunteers in order to be relevant. 
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 Addition of extra audio features, by implementing new ones on Marsyas or by adding 

support for different frameworks. 

 

It is our belief that by accomplishing some of the points listed here, a rise in the results will 

almost surely be seen. 
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Appendix A – Requirements Analysis 

 

In any software project, identifying requirements is a natural and crucial stage to the 

development process. When planning an application, it is important to understand its purpose, 

the target audience and the needed features, as well as the unique ones that will distinguish 

the application from the others. 

Brainstorming, imagining hypothetical scenarios and making requirements analysis 

based on them is a good starting point to understand application needs and uses. This analysis 

is valuable indicating the features needed. Obviously it is not required to have a full detailed 

description of each feature and action but it is vital to identify the key features that will 

compose the application. 

 

Application Overview 

Briefly, the aim of the project is to develop a system able to correctly identify mood in 

musical pieces. The application will have a database, storing information about songs mood for 

the entire piece and how it changes over time. This information can be managed and new 

songs can be analyzed and added by administrators. Users will use the application to obtain 

mood information from the database or from their own songs. Among other things, it will be 

possible to observe mood tracks in real time (in Thayer’s plan) and visualize the song sound 

waveform, highlighting each quadrant in different colors. Other functionalities such as creating 

playlists based on a song or point on the plan will also be available and are part of João’s work. 

After the initial brainstorming, a few concepts started to take shape and some 

requirements and ideas about system architecture were defined.  Given the existing needs, it 

became clear that the system must be composed by three different applications, working in a 

client / server architecture. The server will be responsible for all the audio processing, feature 

extraction and database management logic, extracting and analyzing the audio files and to 

create and manage the songs and users database with the returned information. The server 

will also listen for communications from clients, in order to receive administration instructions 

to manage the database or just to return and browse existing information. 

The clients’ role is to communicate with the server, serving as a frontend to it. The 

client application will be the interface for users to browse information and to access related 

functionalities. The administration application serves as a frontend to the administration and 

maintenance of the server. It can be used locally or remotely to control all operations related 

with database management, music processing and uploading of new files. Even if performed in 

the server, these functionalities are all commanded through an administration client, requiring 

correct credentials in order to protect data. 

Next, the requirements analysis for the previously presented architecture will be 

detailed. These lists are important to identify the main sections of the application. It is also 
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possible to have some requirements that will not be implemented, but they should be kept in 

the analysis for future reference. 

This brief application description is summarized in Figure 39 (Chapter 4). 

Server Application 
 

As discussed above, the server application will answer to the queries made by clients, retrieve 

songs information and entire playlists as well as manage the entire songs and users’ database. 

It can be viewed as various distinct modules: database management, audio processing, client 

communication and others. In the table below (Table 16) the requirements analysis for the 

server application is presented: 

 

Requirements Details 

User accounts - Create account 
- Remove account 
- Block / Ban account 
- Edit profile 
- Encrypt sensible user information (password at least) 

Client communication - User authentication 
- Process user queries 
- Return query results (m3u, song info, …) 
- Stream/send songs 
- Receive songs from users/administrators 
- Remove song from DB 
- Change server settings (administrators) 

Database management - Create database 
- Drop database 
- Delete database 
- Insert new songs information 
- Update / edit existent information 
- Select / browse songs information 

Audio processing - Down sample songs 
- Extract audio features 
- Apply classifiers 

Table 16: Server application requirements 

 

Client Application 
 

The client application is used by normal users to communicate with the server.  Through it, 

users can create an account, browse DB information by searching songs with specific mood, 
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receiving song details, mood tracking information, recommended playlists and even the songs 

themselves.  

A detailed list of requirements for this application is presented below in Table 17 

 

Requirements Details 

User credentials - Register user 
- Login 
- Logout 
- Edit profile / change password 

Server  communication - Connect to server (local / remote) 
- Transmit queries 
- Receive/process results 
- Receive / download audio file or stream 
-Send song to be processed 

Browse information - View all DB songs in Thayer’s model (DB map) 
- Create playlists by: 

- selecting/uploading a song file 
- a point in the AV 2D graph 
- playlist trajectory 
- selected area in the AV 2D graph 

- Apply zoom to the DB map 
- Filter map view by: 

- musical genre 
- artist 
- album 
- year (or year interval) 
- other relevant musical attributes 
- a selected group of audio features 

- View mood tracking information (graph) for a database song 
- View mood tracking in real time (graph tracing) 
- View mood tracking information in wave form graph 
- Other methods of viewing results 
- Export playlist (m3u) 
- Exclude songs from suggested playlist 
- Download songs 

Table 17: Client application requirements (Client Application) 

 

Administration Application 
 

The administration application serves as a frontend to manage servers and their settings. 

Among some functionalities, administrators are able to add and remove songs, update existent 

songs and users’ information, changing server settings and managing users related with audio 

processing or the server operation itself. 
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A detailed list of administration module requirements is presented below in Table 18. 

 

Requirements Details 

User accounts - Login (as administrator) 
- Edit user account (permissions, password, …) 
- Remove user account 
- Create account 
- Block user 

Server  communication - Connect to server (local / remote) 
- Transmit queries 
- Receive/process results 
- Upload music files (with title/artist and other information) 

Manage database - Create a new songs DB 
- Drop existent DB 
- Edit DB information 
- Remove song from DB / server 
- Add song to DB / server (and order feature extraction and 
classification) 
- Add song annotations (AV values, segmentation info, etc., for 
validation tests) 
- Add song information 

Manage settings - View existent audio features (grouped by category) 
- Edit list of selected audio features 
- Change distance algorithm used (similarity) 
- Change default classifier (SVM, GMM, k-NN) 
- Edit classifier parameters 
- Change default taxonomy 
- Perform analysis of results (model accuracy, etc.) 
- Close users registration 

Table 18: Client application requirements (Administration Application) 
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Appendix B – Software Design 

 

Software Design is the key phase of a software engineering project, it precedes the 

development phase and both are intimately connected. In this chapter the technical aspects of 

the application are planned and discussed. From the requirements analysis results, use case 

diagrams were produced, giving us a visual interpretation of the ideas. Following, some 

wireframes and prototypes were constructed and more will be done, serving as the main 

reference for the final application design. Other important aspects belong to data storage. 

Here, it is important to carefully adopt the right solution for application needs. Even more 

crucial is to correctly design the data model, ensuring it is robust, stable, with guarantees of 

good performance and scalability, handling big amounts of data and application redesigns. 

These last steps have already been started but in some cases results are very 

preliminary and will only be concluded in the next month. 

 

Use Cases  
 

The use cases are a type of Unified Model Language (UML) diagrams for graphical 

representation of system behavior. Use cases describe the interaction between one or more 

actors and the system itself, represented as a sequence of simple steps, in other words they 

describe the system from the user’s point of view. 

During the planning phase a few use case diagrams were produced to illustrate the 

main actions of the mood tracking application. These use cases will be improved in the future, 

adding further detail to the requirements. 

Next, two use case diagrams will be presented. The first shows how a normal user 

interacts with the system, detailing the actions he can perform (Figure 37). The second use 

case (Figure 38) represents the actions an administrator is able to do by using the system 

(specifically the administration application). 
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Figure 37: Use case 1 (normal user) 

 



89 
 

 

Figure 38: Use case (administrator) 

System Architecture 
 

The diagram below (Figure 39) describes the system architecture for our project, following the 

application requirements outlined in Chapter 3. There, the three applications are represented, 

as well as the interaction between them, with some of their most important internal modules 

detailed. 
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Figure 39: System Architecture 

 

Application Prototype 
 

A prototype is a concept of the future system. As the word implies, a prototype means 

something in the primitive form, a first impression and thus the images presented below do 

not represent the final product but the original, primitive and raw ideas for design. 

These prototypes are split in different groups, a few small wireframes demonstrating 

the existent ideas to represent mood and mood tracking information for a specific song, and a 

more detailed application prototype, whose function is to give a proper representation on how 

the application will look like and how the GUI is designed. 

 

Mood Tracking Prototypes 
 

So far, two different methods for displaying mood tracking results were chosen and will be 

presented in the following paragraphs. However, these two are not the only possibilities since 

new innovative ideas can always surface and be added in the future. 
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The first method consists of drawing the music mood changes in a 2D graph 

representing the Thayer’s plan. This can be performed in real time, while the music is being 

listened or at once, retrieving the information directly from the server and showing the 

complete trace. This idea is described in a sequence of figures presented below (Figure 40, 

Figure 41 and Figure 42), showing the trace evolution, while crossing all the four quadrants 

during the song. 

 

 

Figure 40: Mood tracking (part 1) 
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Figure 41: Mood tracking (part 2) 

 

 

Figure 42: Mood tracking (part 3) 

 

The second method is a bit more technical. This time mood changes are reported using 

the audio waveform. This view is less detailed than the previous method, only indicating when 

mood changes between quadrants. Four colors highlight different parts of the signal, 
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representing the four distinct quadrants of Thayer’s model of mood (see Figure 43). A possible 

improvement to this would be to use color gradients or saturation / luminance, marking this 

way how far from the center the signal is and the proximity with other quadrants. Although 

this idea may sound useful, it is probably complex to implement and depends on the 

functionalities of the GUI, being listed as something for future reference, to be done if time 

and technology permits. 

 

 

Figure 43: Mood tracking with wave form view 

 

Graphical User Interface Prototype 
 

The GUI will be implemented using the Qt framework. Currently, only small wireframes and 

prototypes were prepared, documenting in general aspects what we consider essential to be 

presented in the future interface. In the next picture we introduce the key concepts identified 

until know (Figure 44). 

 A 2D graph representing Thayer’s model of mood is essential to show a DB map, make 

searches and filters as well as view mood tracking for a selected song. The commands will be 

used to play and control a downloaded song, viewing mood in real time and so on. Settings 

selection like features, classifier and distance metrics are useful but a bit more advanced, with 

some more related to João’s work. From this concept there are other parts missing like wave 

form visualization, login menus, filter details, song submission and others. These will appear in 

the next concepts or GUI. 
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Figure 44: Client application GUI concept 

 

Data Storage 
 

Choosing the right data storage solution is really important in order to ensure the optimal 

application performance and operation. During the previous months various alternatives were 

discussed, from plain text, to XML files and real databases among others. The process of 

choosing the most adequate one was based on having a clear picture of current and future 

needs for data storage and access in the project. An acceptable songs library could easily reach 

the thousands of files. Storing general song information but also mood tracking information 

(for each second) will generate a significant amount of data. Using simple text or XML files 

would make it harder and slower in basic operations like search, edits and deletes. On the 

other hand using a full database management system solution like MySQL, PostgreSQL or 

Oracle is really exaggerated for our current needs, increasing the hardware requirements as 

well as the need to have those tools installed and always running. 

The need for an application that can be used both in local and remote applications was 

the key factor on excluding a complete database management system like MySQL. If the 

objective was only for a powerful and robust server to be used on a remove server our choice 

would be different. Due to these facts as well as all the limitations that could exist in a local 

machine and the need for something easy to set up and use, we opted for a lighter solution, 
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making  it possible to access all functionalities of the system by running both apps and having 

the DB file. 

 The solution chosen is SQLite22. SQLite is a software library that implements a self-

contained, serverless, zero-configuration, transactional SQL database engine. SQLite is an 

embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a 

separate server process. SQLite reads and writes directly to ordinary disk files. The database 

file format is cross-platform, storing all information in a single, small footprint file. 

 

Data Model 
 

Considering our data storage choice (SQLite), the next step is designing how the data will be 

kept in the database files. The result of this process will be an Entity-Relationship (ER) diagram, 

an abstract and conceptual representation of data. This part is extremely important to ensure 

that the information is stored using the minimum space possible and retrieved with great 

performance. To guarantee it, we will normalize the DB at least until the 3rd normal form and if 

possible Boyce-Codd normal form (at least for tables we expect to be the most used / biggest). 

 The DB should keep all information about songs (id, title, artist, file name and others), 

mood information (at least AV values), users and other needs. Stable versions of the ER and of 

the physical diagram are presented below (Figure 45 and Figure 46). It already covers most of 

the needs and avoids duplication of values and null cells, some improvements might be 

needed in the next months. 

                                                           
22

 http://www.sqlite.org/ 
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Entity-Relationship Model Diagram (mood.db) 

 

 

Figure 45: Entity-Relationship model diagram 
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 Physical Data Model Diagram (mood.db) 

 

 

Figure 46: Physical Data Model diagram 
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Appendix C – Marsyas Overview 

 

Marsyas is a software framework, written in C++, designed for audio analysis and synthesis. 

The basic idea behind the design of Marsyas is that any audio analysis/synthesis 

computation can be expressed as some type of processing objects called MarSystems. 

Networks of these blocks can also be combined and encapsulated as one single MarSystem. 

 A good number of these building blocks that form the basis of many published 

algorithms are already provided, used to implement more complicated algorithms. In addition, 

it is also possible to extend the framework by creating new blocks. Dataflow in the framework 

is synchronous and each time the tick() function is called a data slice is propagated across the 

entire dataflow network. Therefore, a tick can be seen as an instant of time. 

 MarSystems usually have controls, where they store additional information that may 

be needed to their correct behavior. One example of this is the SoundFileSource MarSystem, 

which obviously needs the name of the file to be opened. In it there are also other controls like 

Gain, which can be adjusted at any time. To access data blocks inside a network, the 

framework uses a path notation. A path like “Series/playbacknet/Gain/g1/real/gain” is the 

control name for accessing the gain control of a Gain MarSystem named g1 in a Series 

composite named playbacknet. The framework also provides a mechanism for linking top-level 

controls to the longer full path control names. 

As stated, there are innumerous MarSystems available, each one with a different 

function. Therefore, the most relevant ones will be described below. 

 

Series 

This is the most basic structure for connecting MarSystems (in Series, as the name implies) into 

dataflow networks. The output of the first object existent inside the Series will become the 

input of the second and so on, as shown in Figure 47. 

 

 

Figure 47: Series composite MarSystem 
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Parallel 

The Parallel composite is used to do parallel calculations when there is an input with multiple 

observations. It receives the input (i.e. various channels) and sends each observation to a 

different MarSystem where calculations run in parallel (Figure 48). 

 

 

Figure 48: Parallel composite MarSystem 

 

Fanout 

Fanout is similar to Parallel, but takes a single observation and sends a copy of this observation 

to all the MarSystems inside of it as shown in Figure 49. 

 

 

Figure 49: Fanout composite MarSystem 

 

Accumulator 

The Accumulator, as the name implies, accumulates results of multiple tick process calls to the 

internal MarSystem. If its nTimes control is set to 10, for each tick received by Accumulator, 10 

ticks will be sent to its internal Marsystems (Figure 50). 
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Figure 50: Accumulator composite MarSystem 

 

Shredder 

A Shredder composite MarSystem does the inverse to what an Accumulator does. While an 

Accumulator builds up a vector containing the results from multiple ticks, a Shredder splits this 

vector into multiple chunks, effectively increasing the rate at which data is output. 

 


