MERGE
Books
Theses
Journal Papers
-
Louro P. L., Redinho H., Malheiro, R., Paiva, R. P. & Panda, R. (2024). “A Comparison Study of Deep Learning Methodologies for Music Emotion Recognition”. Sensors, Vol. 24(7), pp. 2201. DOI: 10.3390/s24072201.
-
Chiu C.-Y., Müller M., Davies M. E. P., Su A. W.-Y. & Yang Y.-H. (2022). “Local Periodicity-Based Beat Tracking for Expressive Classical Piano Music”. IEEE/ACM Transactions on Audio, Speech, and Language Processing, Vol. 31, pp. 2824-2835, DOI: 10.1109/TASLP.2023.3297956.
-
Sulun S., Davies M. E. P. & Viana P. (2022). “Symbolic Music Generation Conditioned on Continuous-Valued Emotions”. IEEE Access, Vol. 10, pp. 44617-44626, DOI: 10.1109/TAFFC.2020.3032373.
Conference Papers
-
Louro P. L., Branco G., Redinho H., Santos R., Malheiro R., Panda R. & Paiva R. P. (2024). “MERGE App: A Prototype Software for Multi-User Emotion-Aware Music Management”. 16th International Conference on Knowledge Discovery and Information Retrieval (KDIR), part of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), Porto, Portugal, November 17-19. DOI: 10.5220/0013067800003838.
-
Louro P. L., Redinho H., Malheiro R., Paiva R. P. & Panda R. (2024). “Improving Deep Learning Methodologies for Music Emotion Recognition”. 30th Portuguese Conference on Pattern Recognition – RECPAD 2024, Covilhã, Portugal, October 25.
-
Ferreira T. G., Redinho H., Louro P., Malheiro R., Paiva R. P. & Panda R. (2024). “Exploring Song Segmentation for Music Emotion Variation Detection”. 15th International Workshop on Machine Learning and Music – MML 2024 – in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases – ECML/PKDD 2024, Vilnius, Lithuania, September 9.
-
Louro P. L. & Panda R. (2023). “"Back in my day...": a Preliminary Study on the Differences in Generational Groups Perception of Musically-evoked Emotion”. Sound and Music Computing Conference – SMC 2024, Porto, Portugal, July 4-6.
-
Louro P. L., Redinho H., Malheiro R., Paiva R. P. & Panda R. (2023). “Exploring Deep Learning Methodologies for Music Emotion Recognition”. Sound and Music Computing Conference – SMC 2024, Porto, Portugal, July 4-6.
Technical Reports
Invited Talks
MOODetector
Books
Theses
- Renato Panda (2019). “Emotion-based Analysis and Classification of Audio Music“. Doctoral Program in Information Science and Technology. University of Coimbra.
- Ricardo Malheiro (2017). “Emotion-based Analysis and Classification of Music Lyrics“. Doctoral Program in Information Science and Technology. University of Coimbra. Supervisor (with the co-supervision of Prof. Dr. Paulo Gomes).
Panda R. (2010). “Automatic Mood Tracking in Audio Music”. Master on Informatics Engineering, Department of Informatics Engineering, University of Coimbra, Portugal, July 2010.
Fernandes J. (2010). “Automatic Playlist Generation via Music Mood Analysis”. Master on Informatics Engineering, Department of Informatics Engineering, University of Coimbra, Portugal, September 2010.
Journal Papers
-
Panda R., Malheiro R. & Paiva R. P. (2023). “Audio Features for Music Emotion Recognition: a Survey”. IEEE Transactions on Affective Computing, Vol. 14(1), pp. 68-88, 10.1109/TAFFC.2020.3032373.
-
Panda R., Malheiro R. & Paiva R. P. (2020). “Novel audio features for music emotion recognition”. IEEE Transactions on Affective Computing, Vol. 11(4), pp. 614-626. DOI: 10.1109/TAFFC.2018.2820691.
-
Malheiro R., Panda R., Gomes P. & Paiva R. P. (2018). “Emotionally-Relevant Features for Classification and Regression of Music Lyrics”. IEEE Transactions on Affective Computing, Vol. 9(2), pp. 240-254, doi:10.1109/TAFFC.2016.2598569.
-
Panda R., Rocha B., Paiva R. P. (2015). “Music Emotion Recognition with Standard and Melodic Audio Features”. Applied Artificial Intelligence, Vol. 29:4, pp. 313-334, Taylor & Francis.
Conference Papers
-
Panda R., Redinho H., Gonçalves C., Malheiro R. & Paiva R. P. (2021). “How Does the Spotify API Compare to the Music Emotion Recognition State-of-the-Art?”. 18th Sound and Music Computing Conference – SMC 2021, June 29 – July 1 (virtual conference).
-
Panda R., Malheiro R., Paiva R. P. (2018). “Musical Texture and Expressivity Features for Music Emotion Recognition”. 19th International Society for Music Information Retrieval Conference – ISMIR 2018, Paris, France.
-
Malheiro R., Panda R., Gomes P. & Paiva R. P. (2016). “Classification and Regression of Music Lyrics: Emotionally-Significant Features”. 8th International Conference on Knowledge Discovery and Information Retrieval – KDIR'2016, Porto, Portugal.
-
Malheiro R., Oliveira H. G., Gomes P. & Paiva R. P. (2016). “Keyword-Based Approach for Lyrics Emotion Variation Detection”. 8th International Conference on Knowledge Discovery and Information Retrieval – KDIR'2016, Porto, Portugal.
-
Malheiro R., Panda R., Gomes P. & Paiva R. P. (2016). “Bi-Modal Music Emotion Recognition: Novel Lyrical Features and Dataset”. 9th International Workshop on Music and Machine Learning – MML'2016 – in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases – ECML/PKDD 2016, Riva del Garda, Italy.
-
Panda R., Malheiro R., Rocha B., Oliveira A. & Paiva R. P. (2013). “Multi-Modal Music Emotion Recognition: A New Dataset, Methodology and Comparative Analysis”. 10th International Symposium on Computer Music Multidisciplinary Research – CMMR’2013, Marseille, France.
-
Panda R., Rocha B., & Paiva R. P. (2013). “Dimensional Music Emotion Recognition: Combining Standard and Melodic Audio Features”. 10th International Symposium on Computer Music Multidisciplinary Research – CMMR’2013, Marseille, France.
-
Rocha B., Panda R. & Paiva R. P. (2013). “Music Emotion Recognition: The Importance of Melodic Features”. 6th International Workshop on Music and Machine Learning – MML’2013 – in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases – ECML/PKDD 2013, Prague, Czech Republic.
-
Malheiro R., Panda R., Gomes P. & Paiva R. P. (2013). “Music Emotion Recognition from Lyrics: A Comparative Study”. 6th International Workshop on Music and Machine Learning – MML’2013 – in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases – ECML/PKDD 2013, Prague, Czech Republic.
-
Panda R and Paiva R. P. (2012). “MIREX 2012: Mood Classifcation Task Submission”. Proceedings of the Music Information Retrieval Exchange – MIREX'2012.
-
Panda R. and Paiva R. P. (2012). “Music Emotion Classification: Dataset Acquisition and Comparative Analysis”. 15th International Conference on Digital Audio Effects – DAFx ’12, York, UK.
-
Panda R. and Paiva R. P. (2012). “Music Emotion Classification: Analysis of a Classifier Ensemble Approach”. 5th International Workshop on Machine Learning and Music – MML ’2012 (at the 29th International Conference on Machine Learning – ICML’2012), Edinburgh, Scotland, UK.
-
Cardoso L., Panda R and Paiva R. P. (2011). “MOODetector: A Prototype Software Tool for Mood-based Playlist Generation”. Simpósio de Informática – INForum 2011, Coimbra, Portugal.
Panda R. and Paiva R. P. (2011). “Automatic Creation of Mood Playlists in the Thayer Plane: a Methodology and a Comparative Study”. 8th Sound and Music Computing Conference – SMC’2011, Padova, Italy.
- Panda R. and Paiva R. P. (2011). “Using Support Vector Machines for Automatic Mood Tracking in Audio Music”. Proceedings of the 130th Audio Engineering Society Convention – AES 130, London, UK.
Technical Reports
Invited Talks
Paiva R. P. (2013). “Music Data Mining: Automatic Emotion Recognition”. Invited Presentation. Ciclo de Conferencias en Ingeniería Informática, Universidad Central del Ecuador, Quito, Ecuador. October 25, 2013.
Paiva R. P. (2013). “MOODetector: Automatic Music Emotion Recognition”. Invited Presentation. Campus Party Quito 3, Quito, Equador. September 20, 2013.
Paiva R. P. (2012). “From Music Information Retrieval to Music Emotion Recognition”. Internal Presentation. Center for Informatics and Systems of the University of Coimbra, Portugal.
Paiva R. P. (2010). “MOODetector: A System for Mood-based Classification and Retrieval of Audio Music”. Invited Presentation. 1as. Jornadas de la Sociedad Ibérica de Tecnología Musical, Madrid, Spain. December 2010.
Mellodee
Books
Theses
Journal Papers
Paiva R. P., Mendes T. and Cardoso A. (2008). “From Pitches to Notes: Creation and Segmentation of Pitch Tracks for Melody Detection in Polyphonic Audio”. Journal of New Music Research, Vol. 37, No. 3, pp 185-205, Taylor and Francis.
Paiva R. P., Mendes T. and Cardoso A. (2006). “Melody Detection in Polyphonic Musical Signals: Exploiting Perceptual Rules, Note Salience and Melodic Smoothness”. Computer Music Journal, Vol. 30, No. 4, pp. 80-98, MIT Press.
Conference Papers
Paiva R. P. (2007). “An Approach for Melody Extraction from Polyphonic Audio: Using Perceptual Principles and Melodic Smoothness”. Proceedings of the 154th Meeting of the Acoustical Society of America, New Orleans, USA, November 2007.
Paiva R. P. (2005). “An Algorithm for Melody Detection in Polyphonic Recordings”. Proceedings of the Music Information Retrieval Exchange – MIREX’2005.
Paiva R. P., Mendes T. and Cardoso A. (2005). “On the Detection of Melody Notes in Polyphonic Audio”. Proceedings of the International Conference on Music Information Retrieval – ISMIR’2005, London, UK.
Paiva R. P., Mendes T. and Cardoso A. (2005). “Exploiting Melodic Smoothness for Melody Detection in Polyphonic Audio”. Proceedings of the International Computer Music Conference – ICMC’2005, Barcelona, Spain.
Paiva R. P., Mendes T. and Cardoso A. (2005). “On the Definition of Musical Notes from Pitch Tracks for Melody Detection in Polyphonic Recordings”. Proceedings of the International Conference on Digital Audio Effects – DAFx’05, Madrid, Spain.
Paiva R. P., Mendes T. and Cardoso A. (2005). “Segmentation of Pitch Tracks for Melody Detection in Polyphonic Audio”. Proceedings of the European Signal Processing Conference – EUSIPCO’2005, Antalya, Turkey.
Paiva R. P., Mendes T. and Cardoso A. (2005). “An Auditory Model Based Approach for Melody Detection in Polyphonic Musical Recordings”. U. K. Wiil (ed.) Computer Music Modeling and Retrieval – CMMR 2004, Esbjerg, Denmark, Lecture Notes in Computer Science, Vol. 3310, pp. 21-40.
-
Paiva R. P., Mendes T. and Cardoso A. (2004). “A Methodology for Detection of Melody in Polyphonic Musical Signals”. Proceedings of the 116th Audio Engineering Society Convention – AES 116, Berlim, Germany.
Technical Reports
Invited Presentations